· 重点人群关注 · 儿童健康研究 ·

中国儿童性早熟影响因素的 Meta 分析

胡婉琴10,余深艳1,曹学华2*0,向凤1,贾钰1

1.610075 四川省成都市,成都中医药大学护理学院 2.610072 四川省成都市,四川省医学科学院·四川省人民医院妇科 通信作者: 曹学华, 副主任护师; E-mail: cao_xuehua@126.com

【摘要】 背景 我国儿童性早熟发生率逐年上升,性早熟儿童比正常儿童更易出现身心健康问题,正常生活 成长受到影响。目前临床对于性早熟的认识及防治措施尚不足,明确相关影响因素,为开展性早熟的防治工作提供 参考具有重要意义。目的 通过 Meta 分析探讨中国儿童发生性早熟的影响因素。方法 计算机检索 PubMed、Web of Science、Embase、Cochrane Library、中国生物医学文献数据库、中国知网、维普网、万方数据知识服务平台中有关于 中国儿童性早熟影响因素的相关文献,检索时间设置为建库至2024-04-30。由2名研究人员独立筛选文献,并对纳 入文献进行数据提取和质量评价,使用 Stata 15.0 软件进行 Meta 分析。结果 最终纳入 41 篇文献,总样本量为 44 221 例,共提取到 31 个影响因素。文献方法学质量评价结果:中等质量文献 20 篇,高质量文献 21 篇。Meta 分析结果显 示,女性(OR=1.64)、居住城市(OR=4.13)、居住化工园区附近(OR=2.52)、母亲初潮年龄≤12岁(OR=2.37) 及 >12~14 岁 (OR=3.04)、父母学历低 (OR=2.41)、父母关系不和睦 (OR=4.37)、父母陪伴时长 <0.5 年 (OR=2.05)、 视屏时间 >2 h/d(OR=3.07)、喜爱言情类作品(OR=5.94)、户外活动时长 <1 h/d(OR=3.86)、开灯睡觉(OR=2.48)、 使用成人化学用品(OR=5.36)、家中常用塑料制品(OR=2.45)、课业负担重(OR=2.63)、性早熟家族史(OR=3.23)、 高 BMI (OR=1.57)、睡眠时长≤ 8 h/d (OR=2.57)、常食用营养滋补品(OR=3.01)、高热量高脂饮食(OR=3.05)、 高蛋白饮食(OR=2.47)、动物性食品(OR=3.35)、喜食甜食(OR=5.85)、含色素或防腐剂食品(OR=1.80)、瘦素(OR=5.34)、 雌二醇(OR=3.32)、黄体生成素(OR=3.71)、胰岛素样生长因子1(OR=2.70)、促卵泡生成素(OR=2.40)水平升 高是中国儿童性早熟的主要危险因素(P<0.05); 而母亲初潮年龄>14岁(OR=0.64)、户外活动时长≥2h/d(OR=0.73) 及食用蔬菜水果 $\geqslant 200 \text{ g/d}$ (OR=0.60) 是中国儿童性早熟的保护因素 (P<0.05)。**结论** 现有研究证据表明,中国儿 童发生性早熟受社会人口学因素、社会心理学因素、遗传因素、生理因素、饮食因素和环境因素的多元影响,其中母 亲初潮年龄较晚、户外活动时长越长和食用蔬菜水果≥ 200 g/d 为保护因素。今后需要针对可控因素进行调查与干预, 家庭、学校及医院可共同配合,避免或减少儿童性早熟的发生。

【关键词】 青春期,早熟;性早熟;儿童;中国;影响因素; Meta分析

【中图分类号】 R 585 【文献标识码】 A DOI: 10.12114/j.issn.1007-9572.2024.0459

Factors Associated with Precocious Puberty in Chinese Children: a Meta-analysis

HU Wanqin¹, YU Shenyan¹, CAO Xuehua^{2*}, XIANG Feng¹, JIA Yu¹

1. School of Nursing, Chengdu University of TCM, Chengdu 610075, China

2.Department of Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China

*Corresponding author: CAO Xuehua, Associate chief nurse; E-mail: cao_xuehua@126.com

[Abstract] Background The incidence of precocious puberty (PP) in Chinese children is increasing year by year, precocious children are more likely to have physical and mental health problems than normal children, and their growth can be affected. In view of the current clinical lack of understanding and prevention measures for PP, it's of great significance to clarify the relevant influencing factors and provide references for the prevention and treatment of PP. Objective To systematically evaluate the factors associated with PP in Chinese children. Methods We searched PubMed, Web of Science, Embase,

引用本文: 胡婉琴, 余深艳, 曹学华, 等. 中国儿童性早熟影响因素的 Meta 分析 [J]. 中国全科医学, 2025, 28 (21): 2661-2671, 2685. DOI: 10.12114/j.issn.1007-9572.2024.0459. [www.chinagp.net]

HU W Q, YU S Y, CAO X H, et al. Factors associated with precocious puberty in Chinese children: a meta-analysis [J]. Chinese General Practice, 2025, 28 (21): 2661-2671, 2685.

© Editorial Office of Chinese General Practice. This is an open access article under the CC BY-NC-ND 4.0 license.

Cochrane Library, CBM, CNKI, VIP and Wanfang databases, the search period was from the establishment of the database to April 30, 2024. Two researchers independently screened the literature, extracted data and assessed the quality of the included literature, and we performed Meta-analysis using Stata 15.0 software. Results A total of 41 studies covering 44 221 cases were selected, and 31 influencing factors were extracted. Methodological quality evaluation of the literature shows that 20 mediumquality and 21 high-quality studies were included. Meta-analysis demonstrated that; female (OR=1.64), urban settlement (OR=4.13), residential near chemical industry park (OR=2.52), maternal age at menarche ≤ 12 years old (OR=2.37), >12-14 years old (OR=3.04), low parental education (OR=2.41), poor parental relationship (OR=4.37), parental companionship <0.5 years (OR=2.05), screen time (OR=3.07), love romantic films and novels (OR=5.94), outdoor activity<1 h/d (OR=3.86), sleep with the light on (OR=2.48), use of adult chemical products (OR=5.36), plastic products are often used at home (OR=2.45), heavy school workload (OR=2.63), family history of PP (OR=3.23), high BMI (OR=1.57), sleep duration (OR=2.57), frequent consumption of nutritional supplements (OR=3.01), high-calorie and high-fat diets (OR=3.05), high protein diets (OR=2.47), animal food (OR=3.35), sweets (OR=5.85), food containing pigments or preservatives (OR=1.80), leptin (OR=5.34), estradiol (OR=3.32), luteinizing hormone (OR=3.71), insulin-like growth factor 1 (OR=2.70) and follicle stimulating hormone (OR=2.40) levels were the main risk factors for PP in Chinese children (P < 0.05), whereas maternal age at menarche >14 years (OR = 0.64), outdoor activity ≥ 2 h/d (OR = 0.73) and consumption of vegetables and fruits $\geq 200 \text{ g/d}$ (OR=0.60) were protective factors (P<0.05). Conclusion Our findings show that the occurrence of PP in Chinese children is influenced by a multitude of sociodemographic, psychosocial, genetic, physiological, dietary, and environmental factors, among which the later age of mother's menarche, the longer outdoor activities and the consumption of vegetables and fruits ≥ 200 g/d are protective factors. In the future, it is necessary to investigate and intervene on controllable factors. Families, schools and hospitals can work together to avoid or reduce the occurrence of PP in children.

[Key words] Puberty, precocious; Precocious puberty; Child; China; Influencing factors; Meta-analysis

性早熟 (PP) 是儿童常见的内分泌疾病,一般定义为低于某国家 / 地区正常人群青春期发育年龄的中值 / 平均值 2~2.5 个标准差;在我国指女童在 8 岁之前,男童在 9 岁之前即出现提前的青春期发育和荷尔蒙迹象,如腋毛、阴毛的生长,女童出现乳房发育,男童出现睾丸体积的增大等表现 [1-3]。按发生机制可分为中枢性性早熟 (CPP)、外周性性早熟 (PPP)、部分性性早熟又称不完全性性早熟 (IPP) [4],最新 2022 版共识将CPP 诊断年龄界值修订为女童 7.5 岁前出现乳房发育或10 岁前出现月经初潮 [5]。

PP 会对儿童的身心发育造成一定影响,比如加速骨龄的增长以致成年身材矮小,增加儿童发生肥胖、糖尿病等疾病的风险 [6-7]; PP 儿童比正常儿童更易有心理负担,更易出现社会行为和情感异常 [8],甚至有研究发现 PP 女童患乳腺癌和子宫癌的风险会增高,CPP也可能是一些中枢神经系统疾病及生殖系统疾病的前兆 [9-11]。调查显示 2011—2019 年我国儿童 PP 患病率呈上升趋势,2021 年某地区有 11.47% 的女童和 3.26% 的男童被检出 PP [12-13]。 PP 在我国的发病率较高,关于儿童 PP 的危险因素的研究也逐年增加,但是研究样本量较小,结果也并不一致,因此本研究旨在通过Meta 分析进一步明确我国儿童 PP 患病的影响因素,以期为 PP 的及时发现和预防,为促进儿童的正常生活和成长提供循证证据。本研究在 PROSPERO 数据库注册,

注册号: CRD42024550850。

1 资料与方法

1.1 检索策略

计算机检索 PubMed、Web of Science、Embase、Cochrane Library、中国生物医学文献数据库(CBM)、中国知网(CNKI)、维普网(VIP)、万方数据知识服务平台(Wanfang Data)中有关于中国儿童 PP 影响因素的相关文献,检索时间设置为建库至 2024-04-30,同时追溯纳入研究的参考文献作为补充,以保证文献检索的全面性。采用主题词与自由词相结合的方式,中文检索词包括:"性早熟、早发育""儿童、小儿""影响因素、相关因素、预测因素"等。英文检索词包括:"Puberty,Precocious,Pubertas Praecox,Precocities,

Sexual" "Child、Children" "Factor*、Influence factor、Correalative factor" "China、Chinese" 等。具体检索策略以中国知网为例,见表 1。

1.2 文献纳入与排除标准

1.2.1 纳入标准: (1)研究对象为中国≤12周岁的儿童; (2)研究类型为横断面研究、病例对照研究或队列研究; (3)诊断标准参考中华医学会儿科学分会内分泌遗传代谢学组2015年制订的《中枢性性早熟诊断与治疗共识(2015)》^[14]、中华人民共和国卫生部2011年推荐的《性早熟诊疗指南》^[15]、《儿科疾病诊疗常规》^[16]

中相关诊断标准或《儿童性早熟与青春期延迟》[17]中 的相关标准: (4)结局指标指明发生了PP,发生PP 可能影响因素的 OR 值及其 95%CI; (5) 文献语种为 中文和英文。

表1 中国知网数据库检索策略

Table 1 Strategy for searching literature in CNKI database

	8
步骤	检索式
#1	性早熟 + 青春期 + 早发育 + 中枢性性早熟 + 外周性性早熟 + 不完全性性早熟 +PP+CPP+PPP+IPP
#2	儿童 + 小儿 + 学龄前 + 幼儿
#3	影响因素 + 相关因素 + 危险因素 + 预测因素
#4	#1 AND #2 AND #3

注: PP=性早熟, CPP=中枢性性早熟, PPP=外周性性早熟, IPP= 不完全性性早熟。

1.2.2 排除标准:(1)综述、会议、个案报道等类型文献: (2)没有相关数据、数据重复、数据不全无法提取的文献; (3) 无法获取全文的文献; (4) 文献质量低的文献(评 分<4分)。

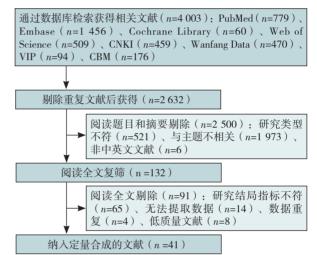
1.3 文献筛选与资料提取

由2名研究者独立对相关文献进行检索、筛选、数 据提取并且交叉核对,在此过程中如果意见有分歧,则 咨询第三方研究者协助判断是否纳入。使用 EndNote 20 文献管理软件进行文献的筛选,严格按照文献纳入和排 除标准,首先去除重复文献,再通过阅读标题和摘要去 除无关文献, 最后阅读全文确定是否纳入。提取的信息 包括:第一作者、发表时间、研究地区、研究类型、样 本量/病例组例数和对照组例数、平均年龄/年龄范围、 Logistic 回归分析中包含的影响因素。

1.4 文献质量评价

由 2 名研究人员独自进行,处理方法同 1.3。横断 面研究采用美国卫生保健质量和研究机构(AHRQ)编 制的评价量表,该量表包含11个条目,总分11分, 0~3 分为低质量、4~7 分为中等质量、≥8 分为高质 量^[18]。病例对照研究与队列研究采用 AHRQ 推荐的纽 卡斯尔 - 渥太华量表(NOS)进行评价,总分为9分, 其中0~3分为低质量(A级)、4~6分为中等质量(B级)、 7~9 分为高质量(C级)^[19]。

1.5 统计学方法


本研究采用 Stata 15.0 软件进行统计学分析,采用 OR 值及其 95%CI 为效应分析统计量, 双侧检验水准 为 $\alpha = 0.05$ 。纳入文献间的异质性采用 χ^2 检验(双侧 检验水准为 $\alpha = 0.1$) 进行分析, 使用 I^2 定量判断异质 性的大小, 当 I^2 <50% 且 P>0.10 时表示各研究间异质 性较小,采用固定效应模型进行分析; 当 $I^2 \ge 50\%$ 且 $P \leq 0.10$ 时表示研究间存在明显异质性,则采用随机 效应模型。当异质性明显时,进一步通过对比随机和固

定效应模型结果一致性以及逐一剔除法进行敏感性分 析: 即 I^2 接近 50% 或与 P 值相矛盾时转换效应模型, $I^2 > 50\%$ 时采用逐一剔除法。结合 Egger's 线性回归评价 对单个影响因素纳入文献数≥ 10 篇的研究进行发表偏 倚检验并绘制漏斗图, 若 P>0.05 提示发表偏倚的可能 性较小。以 P<0.05 为差异有统计学意义。

2 结果

2.1 文献检索流程及结果

初步检索文献获得文献 4 003 篇, 去除重复文献 1 371 篇, 进一步阅读标题和摘要后排除文献 2 500 篇,最后进行全文筛查后纳入41篇文献[20-60]。具 体文献筛洗流程见图 1。

注: CNKI= 中国知网, Wanfang Data= 万方数据知识服务平台, VIP= 维普网, CBM= 中国生物医学文献数据库。

图1 文献筛选流程及结果

Figure 1 Literature screening flow chart and results

2.2 纳入文献的基本特征及质量评价

本研究总样本量为44221例,对提及相同影响因 素≥2篇的研究进行合并, 共提取31项参与Logistic回 归分析的影响因素。文献方法学质量评价结果:中等质 量的文献有 20 篇 [26, 28, 30-31, 33-34, 36-37, 39, 42-43, 45-46, 49-50, 52-54, 58, 60], 高质量的文献有 21 篇 [20-25, 27, 29, 32, 35, 38, 40-41, 44, 47-48, 51, 55-57, 59]。具体的纳入文献基本特征与质 量评价结果见表 2。

2.3 Meta 分析结果

在"生物-心理-社会模型"框架指导下,参考相 关综述文献[61]综合考虑生物因素、心理因素和社会环 境因素等对儿童发生 PP 的影响,对提取的 31 项影响因 素进行了分类,其中女性、居住城市、课业负担重3个 因素在各研究间异质性可接受,采用固定效应模型进行 Meta 分析:居住化工园区附近、母亲初潮年龄、父母

表 2 纳入研究的基本特征与方法学质量评价结果

Table 2 Basic characteristics and methodological quality evaluation results of the included studies

第一作者	发表时 间(年)	地区	研究类型	样本量 (T/C,例)	年龄 (岁)	影响因素	质量评分 (分)	质量 等级
GU [20]	2024	上海市	病例对照研究	185/185	7.84 ± 1.05	202124	8	A
罗璇[21]	2024	重庆市	病例对照研究	105/105	7.56 ± 1.08	4671019	7	A
李卫芹 [22]	2024	天津市	病例对照研究	177/354	7.72 ± 1.02	4310	7	A
GAN [23]	2023	浙江省	横断面研究	221/144	8.23 ± 0.81	2630	8	A
DONG [24]	2023	多地区	横断面研究	198/205	8.76 ± 1.87	134057892223	9	A
BIGAMBO [25]	2023	江苏省	病例对照研究	225/297	7.20 ± 1.11	8056	8	A
诸宏伟 [26]	2023	安徽省	横断面研究	70/70	_	4679	6	В
汤陈璐 ^[27]	2023	江苏省	横断面研究	103/—	6.21 ± 0.76	18/28/29/30	8	A
车晓晴 [28]	2023	河南省	横断面研究	108/54	6~12	24689101213202	6	В
PANG [29]	2022	北京市	横断面研究	408/5 119	10.88	4810	9	A
朱薇 [30]	2022	河南省	横断面研究	86/86	7.31 ± 0.45	24698202	7	В
张苗苗[31]	2022	安徽省	横断面研究	45/235	≤ 10	45911234689	6	В
张佳琳[32]	2022	河南省	病例对照研究	63/63	8.16 ± 0.63	12(3)(21)	7	A
向静瑶[33]	2022	四川省	横断面研究	99/64	8.06 ± 1.92	4562291	7	В
刘丽芳 [34]	2022	浙江省	病例对照研究	340/344	7.15 ± 1.26	4567118	6	В
刘桂华[35]	2022	江苏省	病例对照研究	352/352	7.52 ± 0.54	18/19/20/24	7	A
黄婷 [36]	2022	广西壮族自治区	病例对照研究	40/40	7.13 ± 0.56	4681017	6	В
高海燕[37]	2022	广东省	病例对照研究	56/50	9.03 ± 1.68	2468922	6	В
干冬梅[38]	2022	浙江省	横断面研究	267/13 947	3~12	(10(6)(9)2024)	8	A
竺益 ^[39]	2022	浙江省	病例对照研究	103/103	8.1 ± 1.6	9101718222	6	В
严雪梅 [40]	2021	安徽省	病例对照研究	80/80	7.45 ± 2.35	246892	7	A
许天友[41]	2021	浙江省	病例对照研究	95/83	7.42 ± 1.36	2029	7	A
王雪[42]	2021	北京市	横断面研究	122/69	7.10 ± 0.46	458689	7	В
满丽娜 [43]	2021	辽宁省	横断面研究	185/100	7.42 ± 1.06	16283031	7	В
耿利娜 [44]	2021	上海市	病例对照研究	243/243	7.81 ± 1.02	41145892	7	A
龚岱 [45]	2021	湖南省	横断面研究	36/176	4.52 ± 0.61	361032	7	В
吴楚婷 [46]	2021	广东省	横断面研究	45/45	6.65 ± 0.35	346918192123	7	В
李长春[47]	2020	上海市	横断面研究	96/6 825	7.12 ± 0.58	4000620	8	A
刘泽英 [48]	2020	湖南省	病例对照研究	100/100	8.5 ± 1.6	471	7	A
刘海莲[49]	2020	重庆市	横断面研究	60/60	7.23 ± 1.20	3469233892	6	В
李长秀 [50]	2020	广东省	横断面研究	148/7 061	4.67 ± 0.68	4618192023	7	В
盛美玲[51]	2019	浙江省	病例对照研究	104/100	7.41 ± 0.39	3450000	7	A
冼雄辉 ^[52]	2018	广东省	横断面研究	108/—	7.27 ± 0.59	28/29	6	В
王琰华[53]	2018	天津市	横断面研究	127/254	6~8	4.12.13.18	6	В
黄坚 [54]	2018	江西省	病例对照研究	125/125	_	389203	6	В
赵志红[55]	2017	山东省	病例对照研究	300/300	6.7 ± 1.3	02346	7	A
杨挺[56]	2017	浙江省	横断面研究	302/200	7.88 ± 1.45	24698923	8	A
杨章萍 [57]	2016		病例对照研究		7.88 ± 1.43 7.91 ± 0.85	6D2	7	
陆丽芳[58]		浙江省	,,,,,	219/271		160234682		A
DENG ^[59]	2013		横断面研究	96/100	10.30 ± 2.39	~ ~ ~	6	В
	2012	安徽省	病例对照研究	78/100	6.64 ± 2.77	47 400000	7	A
欧阳春花 [60]	2003	河南省	病例对照研究	96/96		4811821	6	В

注: T 为病例组,C 为对照组;—表示未提及;影响因素:①女性,②居住城市,③居住化工园区附近,④母亲初潮年龄,⑤父母学历,⑥父母关系不和睦,⑦父母陪伴时长 <0.5 年,⑧视屏时间 >2 h/d,⑨喜爱言情类作品,⑩户外活动时长,⑪开灯睡觉,⑫使用成人化学用品(非儿童专用化妆品或洗漱用品),⑬家中常用塑料制品(塑料制品包装或盛纳食物 / 水),⑭课业负担重,⑮ PP 家族史,⑯ BMI(女童 \geq 21.0 kg/m²,男童 \geq 21.4 kg/m²),⑪睡眠时长 \leq 8 h/d,⑱常食用营养滋补品,⑩高热量高脂饮食,⑪高蛋白饮食,⑪动物性食品(来源于动物的食物,包括肉类、鱼类、海鲜、蛋类及乳制品),⑫甜食,⑬含色素或防腐剂食品,⑭蔬菜和水果 \geq 200 g/d,⑤瘦素,⑤骨龄,⑰雌二醇(E2),⑧黄体生成素(LH),⑩胰岛素样生长因子 1(IGF-1),⑩ 25 羟维生素 D [25-(OH) D],⑪促卵泡生成素(FSH)。

学历等其他28个影响因素在各研究间存在较明显异质 性,采用随机效应模型进行分析。分析结果显示,女性、 居住城市、居住化工园区附近、母亲初潮年龄≤12岁 及 >12~14 岁、父母学历低、父母关系不和睦、父母陪 伴时长 <0.5 年、视屏时间 >2 h/d、喜爱言情类作品、户 外活动时长 <1 h/d、开灯睡觉、使用成人化学用品、家 中常用塑料制品、课业负担重、PP家族史、高BMI、 睡眠时长≤8 h/d、常食用营养滋补品、高热量高脂饮食、 高蛋白饮食、动物性食品、喜食甜食、含色素或防腐剂 食品、瘦素、雌二醇(E2)、黄体生成素(LH)、胰 岛素样生长因子1(IGF-1)、促卵泡生成素(FSH)水 平升高是中国儿童 PP 的主要危险因素 (P<0.05); 而 母亲初潮年龄 >14 岁、户外活动时长≥ 2 h/d 及食用蔬 菜水果 $\geq 200 \text{ g/d}$ 是中国儿童 PP 的保护因素 (P < 0.05), 见表 3。

2.4 敏感性分析

2.4.1 改变效应模型:对所纳入影响因素合并的 OR 值 及其 95%CI 采用不同效应模型进行敏感性分析, 结果 发现除了骨龄和 25 羟维生素 D [25-(OH)D]外, 其 他影响因素的一致性较好,表明研究结果较稳定,见表4。 2.4.2 逐一剔除法: 对于影响因素中 $I^2 > 50\%$ 且 >2 篇的

表 3 中国儿童 PP 影响因素异质性检验及 Meta 分析结果 Table 3 Heterogeneity of influencing factors of precocious puberty in Chinese children and the results of meta-analysis

	纳人研究数	异质性	生检验	效应	Meta 分析结果					
影响因素	(篇)	I ² 值 (%)	P值	模型	OR (95%CI)	P值				
社会人口学因素										
女性	2 [24, 58]	44.3	0.180	固定	1.64(1.30~2.08)	< 0.001				
居住城市	5 [28, 30, 37, 40, 56]	40.0	0.155	固定	4.13(2.90~5.90)	< 0.001				
父母学历	$4^{[31,\ 34,\ 42,\ 51]}$	84.0	< 0.001	随机	2.41(1.24~4.69)	0.009				
社会心理学因素										
父母关系不 和睦	14 [21, 26, 28, 30, 34, 36-37, 40, 45-46, 49-50, 56, 58]	70.0	<0.001	随机	4.37(3.10~6.16)	<0.001				
父母陪伴时 长<0.5年	5 ^[21, 26, 34, 48, 59]	88.4	<0.001	随机	2.05(1.06~3.97)	0.032				
喜爱言情类 作品	9 ^[28, 30–31, 37, 39–40, 46, 49, 56]	78.4	<0.001	随机	5.94(3.63~9.73)	<0.001				
课业负担重	5 [31, 44, 51, 55, 58]	0	0.721	固定	2.63(2.03~3.41)	<0.001				
遗传因素										
母亲初潮年龄	:									
≤ 12岁	7 [22, 24, 28, 44, 47, 51, 59]	96.0	<0.001	随机	2.37(1.05~5.38)	0.038				
>12~14岁	15 [21, 26, 30-31, 33-34, 37, 40, 42, 46, 49-50, 53, 56, 60]	80.4	<0.001	随机	3.04(2.19~4.23)	<0.001				

(绿耒 3)

(续表3)									
	纳人研究数	异质性检验		- 效应	Meta 分析结果				
影响因素	(篇)	I ² 值 (%)	P值	模型	OR (95%CI)	P值			
>14岁	3 [29, 36, 48]	76.9	0.013	随机	0.64(0.50~0.83)	0.001			
PP 家族史	5 ^{[24-25, 33-34,} 49]	70.7	0.009	随机	3.23(1.74~5.97)	< 0.001			
生理因素									
BMI	10 ^[25, 31, 33, 38, 42-43, 47, 55, 57-58]	79.5	<0.001	随机	1.57(1.34~1.85)	<0.001			
睡眠时长≤ 8 h/d	$\begin{matrix} 6^{[24,\ 34,\ 36,\ 39,\ }\\ {}^{48,\ 57]}\end{matrix}$	86.4	<0.001	随机	2.57(1.43~2.64)	0.002			
瘦素	3 [24, 32, 45]	61.8	0.073	随机	5.34(2.47~11.56)	< 0.001			
骨龄	3 [23-24, 47]	85.4	0.001	随机	2.55(0.94~6.90)	0.065			
E2	3 [24, 41, 47]	87.1	< 0.001	随机	3.32(1.39~7.93)	0.007			
LH	$5_{52}^{[24,\ 27,\ 33,\ 43,}$	64.9	0.023	随机	3.71(2.53~5.46)	< 0.001			
IGF-1	$4^{[27,\ 33,\ 41,\ 52]}$	83.6	< 0.001	随机	2.70(1.75~4.18)	< 0.001			
25- (OH) D	3 [23, 27, 43]	92.6	< 0.001	随机	0.58(0.18~1.86)	0.362			
FSH	3 [24, 33, 43]	70.4	0.034	随机	2.40(1.37~4.19)	0.002			
饮食因素									
营养滋补品	17 [24, 27, 30-31, 34-35, 39, 42, 44, 46, 49-50, 53-54, 56, 58, 60]	83.5	<0.001	随机	3.01(2.31~3.94)	<0.001			
高热量高脂	13 [21, 24, 26, 31, 35, 38, 42, 44, 46, 49-50, 54, 56]	89.8	<0.001	随机	3.05(2.17~4.29)	<0.001			
高蛋白	9 ^[20, 28, 30, 35, 37–38, 40, 50, 54]	91.8	<0.001	随机	2.47(1.62~3.75)	<0.001			
动物性食品	$8^{[20,\ 32,\ 44,\ 46,\ }_{49,\ 56,\ 58,\ 60]}$	86.4	<0.001	随机	3.35(1.98~5.67)	< 0.001			
甜食	$4^{[28,\ 30,\ 37,\ 39]}$	83.3	< 0.001	随机	5.85(1.96~17.40)	0.002			
含色素或防 腐剂食品	5 ^[33, 46-47, 54, 56]	70.7	0.008	随机	1.80(1.32~2.46)	<0.001			
蔬菜和水果 ≥ 200 g/d	$5_{60}^{[20, 35, 38, 57, 60]}$	80.0	<0.001	随机	0.60(0.42~0.86)	0.005			
环境因素									
视屏时间 >2 h/d	9 ^[22, 25, 28–29, 36–37, 40, 42, 60]	91.6	<0.001	随机	3.07(1.91~4.95)	<0.001			
户外活动时长									
<1 h/d	6 ^[22, 24–25, 36, 45, 51]	84.3	<0.001	随机	3.86(2.03~7.32)	<0.001			
≥ 2 h/d	8 ^{[21, 28-29, 38-} 39, 47, 55, 58]	92.3	<0.001	随机	0.73(0.57~0.93)	0.012			
开灯睡觉	5 [31, 44, 47, 51, 60]	86.8	<0.001	随机	2.48(1.24~4.95)	0.010			
居住化工园 区附近	6 ^[24, 45-46, 49, 51, 54]	73.2	0.002	随机	2.52(1.54~4.14)	<0.001			
使用成人化 学用品	8 ^[28, 31–32, 49, 51, 53, 55, 58]	83.6	<0.001	随机	5.36(2.94~9.85)	<0.001			
家中常用塑 料制品	5 ^[22, 44, 46, 50, 56]	91.3	<0.001	随机	2.45(1.18~5.11)	0.017			

注: E2= 雌二醇, LH= 黄体生成素, IGF-1= 胰岛素样生长因子 1, 25-(OH) D=25 羟维生素 D, FSH= 促卵泡生成素。

表 4 2 种模型对中国儿童 PP 影响因素的敏感性分析情况

Table 4 Sensitivity analysis of two models to influencing factors of precocious puberty in Chinese children

影响因素	固定	效应模型	随机	几效应模型	稳定性	
彩門凶系	OR 值	95%CI	OR 值	95%CI	亿化1	
社会人口学因素						
女性	1.64	(1.30~2.08)	1.69	(1.21~2.37)	稳定	
居住城市	4.13	(2.90~5.90)	4.39	(2.74~7.05)	稳定	
父母学历	1.39	(1.22~1.58)	2.41	(1.24~4.69)	稳定	
社会心理学因素						
父母关系不和睦	3.76	(3.15~4.49)	4.37	(3.10~6.16)	稳定	
父母陪伴时长 < 0.5 年	1.26	(1.04~1.52)	2.05	(1.06~3.97)	稳定	
喜爱言情类作品	4.25	(3.43~5.27)	5.94	(3.63~9.73)	稳定	
课业负担重	2.63	(2.03~3.41)	2.63	(2.03~3.41)	稳定	
贵传因素						
母亲初潮年龄						
≤ 12 岁	1.16	(1.00~1.35)	2.37	(1.05~5.38)	稳定	
>12~14岁	2.17	(1.91~2.46)	3.04	(2.19~4.23)	稳定	
>14 岁	0.72	(0.67~0.77)	0.64	(0.50~0.83)	稳定	
PP 家族史	2.30	(1.80~2.95)	3.23	(1.74~5.97)	稳定	
上理因素						
BMI	1.36	(1.29~1.45)	1.57	(1.34~1.85)	稳定	
睡眠时长≤ 8 h/d	1.33	(1.14~1.54)	2.57	(1.43~2~64)	稳定	
瘦素	4.80	(3.04~7.60)	5.34	(2.47~11.56)	稳定	
骨龄	1.19	(1.14~1.23)	2.55	(0.94~6.90)	不稳	
E2	3.73	(2.75~5.07)	3.32	(1.39~7.93)	稳定	
LH	3.65	(2.97~4.48)	3.71	(2.53~5.46)	稳定	
IGF-1	2.38	(2.04~2.77)	2.70	(1.75~4.18)	稳定	
25- (OH) D	0.72	(0.53~0.98)	0.58	(0.18~1.86)	不稳	
FSH	2.22	(1.66~2.96)	2.40	(1.37~4.19)	稳定	
次食因素						
营养滋补品	1.87	(1.71~2.05)	3.01	(2.31~3.94)	稳定	
高热量高脂	2.01	(1.83~2.20)	3.05	(2.17~4.29)	稳定	
高蛋白	1.43	(1.29~1.59)	2.47	(1.62~3.75)	稳定	
动物性食品	2.10	(1.78~2.47)	3.35	(1.98~5.67)	稳定	
甜食	4.69	(3.05~7.21)	5.85	(1.96~17.40)	稳定	
含色素或防腐剂食品	1.44	(1.27~1.63)	1.80	(1.32~2.46)	稳定	
蔬菜和水果≥ 200 g/d	0.69	(0.61~0.79)	0.60	(0.42~0.86)	稳定	
不境因素						
视屏时间 >2 h/d	1.25	(1.16~1.35)	3.07	(1.91~4.95)	稳定	
户外活动时长						
<1 h/d	3.38	(2.71~4.22)	3.86	(2.03~7.32)	稳定	
≥ 2 h/d	0.92	(0.89~0.94)	0.73	(0.57~0.93)	稳定	
开灯睡觉	1.19	(1.06~1.33)	2.48	(1.24~4.95)	稳定	
居住化工园区附近	1.83	(1.50~2.25)	2.52	(1.54~4.14)	稳定	
使用成人化学用品	5.99	(4.79~7.50)	5.36	(0.65~3.10)	稳定	
家中常用塑料制品	1.02	(1.01~1.03)	2.45	(1.18~5.11)	稳定	

研究通过逐一剔除法剔除单个研究进行敏感性分析,发现通过排除文献,母亲初潮年龄≤ 12 岁、父母陪伴时长 <0.5 年、E2 和骨龄 4 个影响因素的异质性明显降低,前 3 项采用固定效应模型分析,分析结果未发生方向性改变,说明研究结果基本可靠;仅有 25-(OH) D 此项排除文献后虽然异质性降低但是结果发生了方向性改变,表明该项因素仍值得进一步研究,见表 5。

2.5 发表偏倚评估

July 2025, Vol.28 No.21

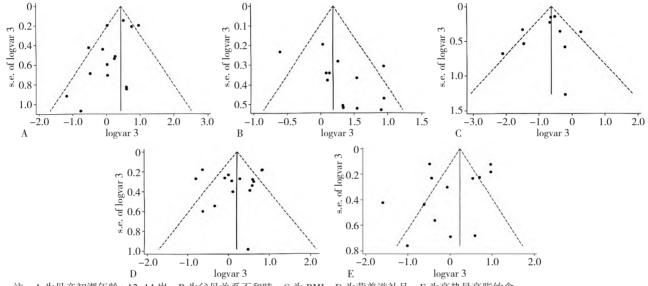
对纳入文献≥ 10 篇的影响因素进行 Egger's 检验描述发表偏倚,结果显示,母亲初潮年龄>12~14岁和父母关系不和睦两项可能存在发表偏倚,绘制漏斗图同样发现整体不对称,见图 2。其余项目检验结果良好,漏斗图整体较为对称,提示无明显发表偏倚,见表 6。

对存在明显发表偏倚的两个项目采用剪补法进行评估,结果显示,母亲初潮年龄>12~14岁、父母关系不和睦,存在发表偏倚P<0.05,剪补前后均发现P<0.05,说明 Meta 分析的合并结果相对稳定,见表 7。

3 讨论

3.1 社会人口学因素

本研究结果显示,女性、居住城市、父母学历低是儿童 PP 的危险因素。既往研究一致表明性别是 PP 发生的关键因素,女童的 PP 发生率显著高于男童,因为女童和男童在内分泌和生长发育方面存在差异,例如在青春期前女童的脂肪组织中雌激素的合成会增加,相比之下男童的睾酮水平在青春期前相对较低,且女童生长高峰时间更早、体脂分布比例更高^[62]。其次,居住于城市的儿童更易发生 PP,可能是因为城市接触的医疗资源和信息更丰富,家长的医疗保健认知水平较高,孩子的一些性成熟表现更易被意识到,由此检出率更高^[63]。此外,本研究发现父母学历低与儿童发生 PP 有关,可能因为文化水平较低的父母,对 PP 的危险因素不具备一定的认知,对孩子青春期生长发育的判断能力不够,未能及时识别和干预。


3.2 社会心理学因素

本研究结果显示,父母关系不和睦、父母陪伴时长 <0.5 年、喜爱言情类作品、课业负担重是儿童 PP 的危险因素。父母关系不和睦的儿童更易发生 PP,家庭氛围不良、觉得课业负担重可能导致儿童社会心理压力增高,可能会激发激素压力反应亢进^[64-65],进而影响机体代谢,导致儿童在成长过程中发生神经 - 心理方面的病态表现^[66]。与不良家庭关系相似,由于心理压力,既往研究得出了父亲在孩子 4~6 岁时陪伴时间少可能加速孩子的青春期提前的结论^[59]。其次,现有研究结果较为一致地发现喜爱言情类电视剧和书籍的儿童更容易发生 PP,言情类作品通常会有浪漫关系和性别角色特

表 5 中国儿童 PP 影响因素的排除分析

Table 5 Exclusion analysis of influencing factors of precocious puberty in Chinese children

以心田孝	4± 4- 20 1H			排除前		排除后				
影响因素	排除文献	I ² (%)	效应模型	OR (95%CI)	P 值	I ² (%)	效应模型	OR (95%CI)	P 值	
母亲初潮年龄≤12岁	$2^{[22, 28]}$	96.0	随机	2.37 (1.05~5.38)	0.038	0	固定	3.83 (2.30~4.89)	< 0.001	
父母陪伴时长 <0.5 年	1 [48]	88.4	随机	2.05 (1.06~3.97)	0.032	51.1	固定	2.16 (1.64~2.85)	< 0.001	
骨龄	1 [47]	85.4	随机	2.55 (0.94~6.90)	0.065	75.6	随机	1.54 (0.79~3.01)	0.206	
E2	1 [41]	87.1	随机	3.32 (1.39~7.93)	0.007	0	固定	2.15 (1.42~3.26)	< 0.001	
25- (OH) D	1 [43]	92.6	随机	0.58 (0.18~1.86)	0.362	76.1	随机	0.34 (0.14~0.83)	0.017	

注: A 为母亲初潮年龄 >12~14 岁,B 为父母关系不和睦,C 为 BMI,D 为营养滋补品,E 为高热量高脂饮食。 **图 2** 中国儿童 PP 影响因素的漏斗图

Figure 2 Funnel plot assessing the publication bias in studies of precocious puberty in Chinese children

表 6 发表偏倚的 Egger's 检验结果 **Table 6** Egger's test results of publication bias

相关因素	P> t	95%CI
母亲初潮年龄 >12~14 岁	0.003	1.273~4.949
父母关系不和睦	0.053	-0.047~5.807
BMI	0.546	-2.853~1.628
营养滋补品	0.681	-3.961~2.665
高热量高脂饮食	0.407	-5.415~2.361

定期望的描绘,儿童较易在该类型作品中接触性知识, 影响其性别角色认知,引发其情感共鸣或者是效仿行为, 尤其是女性^[31]。

3.3 遗传因素

对《中枢性性早熟诊断与治疗专家共识(2022)》^[5] 的解读发现,影响青春期发动年龄的最主要因素是遗 传,本研究结果显示,母亲初潮年龄过早、有 PP 家族 史的儿童发生 PP 风险较高,母亲初潮年龄 >14 岁是儿童 PP 的保护因素。既往研究证实母亲初潮年龄与女儿 初潮年龄呈正相关关系,并且母亲初潮年龄每增加 1 岁,女童 PP 风险降低 41% [22],母亲初潮年龄可能反映其体内的激素水平和内分泌环境,初潮年龄较早可能其雌激素与促性腺激素在青春期前也较高,易影响后代的激素水平与性发育,增加后代发生 PP 的风险 [67];相反,母亲初潮年龄较晚可能反映出一种较慢的生长和发育模式,这种模式可能会在后代中延续,导致他们性成熟的年龄也相对较晚,这种现象可能与遗传有关(如影响激素水平和生长发育的基因),现有研究发现 11.5% 的PP 患者有同性亲属 PP 病史,KISS1、KISS1R、MKRN3和 DLK1 基因是参与了特发性中枢性性早熟的相关已知

表 7 相关影响因素的剪补法分析结果

Table 7 The results of shear compensation analysis of relevant influencing factors

影响因素	剪补文献	Egger's 检验	剪补前		剪补后		
彩刪凶系	(篇) (P值)	(P值)	OR (95%CI)	P 值	OR (95%CI)	P 值	
母亲初潮年龄 >12~14 岁	7	0.003	3.04 (2.19~4.23)	< 0.001	1.87 (1.33~2.67)	< 0.001	
父母关系不和睦	6	0.053	4.37 (3.10~6.16)	< 0.001	2.88 (1.96~4.21)	< 0.001	

遗传因素,而 GABRA1、LIN28B 和 NPYR 等基因被认 为可能与 CPP 相关 [25, 68]。

3.4 生理因素

本研究结果显示,高 BMI、睡眠时长 ≤ 8 h/d,以及瘦素、E2、LH、IGF-1 和 FSH 水平升高均是儿童 PP的重要危险因素。较高的 BMI 对儿童青春期的发生和发展有重要影响,女童的青春期启动、初潮年龄与 BMI 相关^[69],人类全基因组关联研究(GWAS)^[70] 发现了多个 BMI 增加的等位基因,这些等位基因也与月经初潮年龄提前有关,此外男孩青春期发育的 BMI 阈值高于女孩,更易发生不良心血管事件^[62]。

其次,有研究证实睡眠时间较短、较晚的 PP 儿童 青春期发育的激素标志物更高,例如FSH、LH、E2、 IGF-1及TSH^[71]。虽然瘦素不属于传统的性激素,但 其在青春期发育中同样起着重要的调节作用, 也是促进 因素, 尤其是在体脂、能量平衡和性激素分泌方面: 比 如调节卵巢功能,促进子宫内膜增厚和体积增大,此外 还会影响青少年的脂肪水平^[24,72]。E2 主要由孕妇的 胎盘、黄体和卵泡分泌而成,是判断性激素功能和水平 是否正常的重要指标, 促进女性乳腺的发育和男性第二 性征的出现^[73]。IGF-1 刺激内侧基底下丘脑内的肽能 通路,能降低青春期前对促性腺激素释放激素(GnRH) 分泌的抑制^[74],在青春期激活和增强 GnRH 分泌中发 挥作用,进入青春期后会迅速增高[72]。国内外研究一 致发现 PP 儿童血清 IGF-1 水平均高于同龄正常儿童 [32, ^{75]}。FSH 和 LH 协同维持月经周期,而 LH 作用于卵巢 合成雌激素,雌激素作用于生长板,导致生长加速,骨 成熟,骨龄提前[76]。

此外还有研究指出,调控基因表达的因子 miR-125、泌乳素 (PRL)、25-(OH) D 及空腹血糖 (FPG) 均可能与 PP 发生有关 [23, 41, 43]。miR-125b 可能通过调节与性腺发育相关的基因表达,影响儿童的 PP 过程 [77];过高的 PRL 可能影响性腺的发育和功能;维生素 D 可能通过影响生长激素和性激素的分泌来影响 PP,血糖水平的异常可能与内分泌失调有关等。但由于研究文献数量较少,本文仅做描述性分析,未来还应进一步研究。

3.5 饮食因素

本研究结果显示,常食用营养滋补品、高热量高脂、高蛋白、高动物性、甜食及含色素或防腐剂食品均是儿童 PP 的危险因素,常食用蔬菜和水果则为保护性因素。一些补品中可能含有生长激素和性激素成分,增加儿童内源性靶腺激素含量,干扰激素正常分泌^[44];快餐、红肉、甜食等食品营养成分丰富易导致儿童营养过剩,多余热量可转化为脂肪使体脂率升高,动物性食品,特别是乳制品,对青春期进展的潜在影响被研究归因于蛋白质诱导的 IGF-1 的释放;一些证据同样表明,由于蛋

白质介导的生长因子表达增强,儿童时期较高的肉类摄入量与较早的青春期发病有关^[78]。CHEN等^[79]调查了中国 4 085 名 6~9 岁儿童,发现传统饮食模式(即蔬菜水果、肉类、乳制品、水产品等占比科学均衡)与儿童体质量状况(按 BMI 分类)呈负相关,与父母受教育水平呈正相关,更多的水果和蔬菜则与其青春期延迟有关,传统饮食模式对中国儿童 PP 有保护作用^[80]。

除了儿童自身的饮食与营养外,WANG等^[81]发现 妊娠期和哺乳期间母亲的饮食和营养状况也可能会影响 胎儿的发育,具体如妊娠和哺乳期期间母亲高脂饮食,肠道微生物失调会增加儿童肥胖的风险,肥胖使儿童容易发生 PP;但是服用营养滋补品的影响相关研究则较少。因此对于预防 PP,社会和家长可以尽早从饮食方面着手。

3.6 环境因素

本研究结果显示,视屏时间 >2 h/d、较短的户外活动时长、开灯睡觉、居住在化工园区附近、使用成人化学用品、家中常用塑料用品均为儿童 PP 的危险因素。每天看电视或使用智能手机等屏幕暴露时长 >1 h,女童 PP 风险会增加 4.35 倍 [22],可能是蓝光刺激使机体黑色素减少,对性腺的抑制作用减弱,腺垂体促性腺激素提前分泌所导致 [82],同理,现有研究发现,在小鼠中持续的光照可能会影响卵巢黄体生成和黄体功能,促进卵泡发育和卵巢雌激素受体的表达,而给予褪黑色素则可以改善,因此本研究得出开灯睡觉可能会提升发生 PP 的风险 [83]。

户外活动时长 <1 h/d 是儿童 PP 的危险因素, PP 儿 童运动时间少于正常同龄儿童,体力活动不足可能减少 肌肉质量,增加异位脂肪沉淀,脂肪堆积与高炎性细胞 因子水平和低脂联素水平有关,导致青春期早发和快速 发展^[25]。有研究发现经常进行户外锻炼为 PP 发生的 保护因素,有氧运动可通过增加脂联素水平来延缓 CPP 学生的青春期进展[84];另一项研究发现与非运动员相 比, 高强度体育活动的运动员月经初潮推迟了1.13年, 由此提示家长和学校可以适当增加孩子的户外活动时 间[85]。此外工厂的污染物排放对儿童生长环境造成污 染,可能增加水源和土壤中的激素含量,导致儿童内分 泌失调,诱发 PP^[24]。家长的护肤品或化妆品内可能含 有激素类物质,长期给儿童使用外源性激素通过皮肤吸 收会促进 PP 的发生。同样,一些塑料用品中含有能激 活雌激素受体促发雌激素样作用的双酚 A [86], 国外一 项伞状 Meta 分析系统回顾了多种塑料相关化学物质暴 露对人类健康的影响,发现双酚 A 和某些邻苯二甲酸 酯与女童 PP 有关^[87]。

最后,本研究的 Meta 分析结果显示,骨龄和 25-(OH) D 水平对中国儿童 PP 患病率没有影响,与既往

研究结果不一致,这可能是因为本研究所纳入的文献 篇数有限或研究设计不同,存在一定异质性,此外 25-(OH)D水平与PP相关研究也较少,且研究结果在国内外不同人群和环境中有所差异,具体影响途径及作用机制还需要未来更多探索来验证;另外关于母亲妊娠期间摄入营养滋补品对未来孩子发生PP是否有影响的相关研究较少,且研究结果不尽相同,具体机制同样尚未明确;因此未来还需要更多高质量的大样本、多中心分层设计的研究来帮助进一步明确 PP 发生的影响因素。

4 小结

本次 Meta 分析存在以下局限性: (1)个别因素仅纳入了少量文献,无法进行异质性分析,且有的因素仅涉及 2 项研究,证据强度可能存在不足,还需进一步验证;(2)排除了部分无法提取 OR 值及其 95%CI 的文献,可能会对研究结果产生一定的影响;(3)纳入研究涉及 PP 的诊断标准不统一,可能会降低结果的可信度与适用性;(4)纳入的研究类型不统一,易受混杂因素的影响,研究结果可能会有一定偏倚。

综上所述,中国儿童发生 PP 的因素涉及社会人口学、社会心理学、遗传、生理、饮食与环境多个方面,其中母亲初潮年龄较晚、户外活动时长越长和食用蔬菜水果≥ 200 g/d 为儿童 PP 的保护因素。现阶段 PP 成为威胁中国儿童健康的常见疾病,本研究进一步明确了 PP 发生的危险因素及保护因素,为未来的相关研究提供了一定参考,并提示医务人员应提高对儿童 PP 筛查的重视及知识普及,对家长进行更全面的健康教育以尽早识别儿童 PP 的发生,家庭、医院、社会应该共同努力,针对可干预的影响因素开展防治工作,促进儿童健康成长。

作者贡献: 胡婉琴负责文章的构思、设计与撰写; 余深艳和向凤进行文献检索与数据的整理; 胡婉琴和贾 钰负责质量评价; 曹学华负责文章的审校及质量控制, 并对文章整体负责。

本文无利益冲突。

胡婉琴 https://orcid.org/0009-0002-0055-9085 曹学华 https://orcid.org/0009-0002-2093-4786

参考文献

- [1] 中国中西医结合学会儿科专业委员会内分泌工作组,上海市中西医结合学会儿科专业委员会. 儿童性早熟中西医结合诊疗指南(2023版)[J]. 中医杂志, 2024, 65(5): 546-552. DOI: 10.13288/j.11-2166/r.2024.05.017.
- [2] SMETS A M, SOFIA C, BRUNO C, et al. Abdominal imaging in precocious puberty in girls: can imaging determine onset of puberty? [J]. Pediatr Radiol, 2024. DOI: 10.1007/s00247-024-05992-8.

- [3] CALCATERRA V, VERDUCI E, MAGENES V C, et al. The role of pediatric nutrition as a modifiable risk factor for precocious puberty [J]. Life, 2021, 11 (12): 1353. DOI: 10.3390/life11121353.
- [4] BANERJEE S, BAJPAI A. Precocious puberty [J]. Indian J Pediatr, 2023, 90 (6): 582-589. DOI: 10.1007/s12098-023-04554-4.
- [5] 中华医学会儿科学分会内分泌遗传代谢学组,中华儿科杂志编辑委员会.中枢性性早熟诊断与治疗专家共识(2022)[J].中华儿科杂志,2023,61(1):16-22.DOI:10.3760/cma.j.cn112140-20220802-00693.
- [6] 闫淯淳, 彭芸. 影像学检查儿童性早熟[J]. 中国医学 影 像 技 术, 2023, 39(8): 1121-1123. DOI: 10.13929/j.issn.1003-3289.2023.08.001.
- [7] 王亚丽. 大连市某城区性早熟女童流行病学调查研究[D] 大连. 大连医科大学, 2022.
- [8] KLEIN K O, SOLIMAN A M, GRUBB E, et al. A survey of care pathway and health-related quality of life impact for children with central precocious puberty [J]. Curr Med Res Opin, 2020, 36 (3): 411-418. DOI: 10.1080/03007995.2019.1699517.
- [9] TURAN A P, AKCA S O. The quality of life of children with precocious puberty and healthy children in Turkey [J]. Am J Health Behav, 2021, 45 (1); 62-70. DOI; 10.5993/AJHB.45.1.5.
- [10] YOON J S, SO C H, LEE H S, et al. The prevalence of brain abnormalities in boys with central precocious puberty may be overestimated [J] . PLoS One, 2018, 13 (4): e0195209. DOI: 10.1371/journal.pone.0195209.
- [11] NEYMAN A, EUGSTER E A. Treatment of girls and boys with McCune-Albright syndrome with precocious puberty - update 2017 [J] . Pediatr Endocrinol Rev, 2017, 15 (2): 136-141. DOI: 10.17458/per.vol15.2017.nau.treatmentgirlsboys.
- [12] WANG J L, ZHAN S M, YUAN J N, et al. The incidence of brain lesions in central precocious puberty: the main cause for Chinese boys was idiopathic [J] . Clin Endocrinol, 2021, 95 (2): 303– 307. DOI: 10.1111/cen.14462.
- [13] LIU Y F, YU T T, LI X Q, et al. Prevalence of precocious puberty among Chinese children: a school population-based study [J] . Endocrine, 2021, 72 (2) : 573-581. DOI: 10.1007/s12020-021-02630-3.
- [14] 中华医学会儿科学分会内分泌遗传代谢学组,《中华儿科杂志》编辑委员会. 中枢性性早熟诊断与治疗共识(2015)[J]. 中华儿科杂志,2015,53(6):412-418. DOI: 10.3760/cma. j.issn.0578-1310.2015.06.004.
- [15] 中华人民共和国卫生部. 性早熟诊疗指南(试行)[卫办医政发(195)号][J]. 中国儿童保健杂志, 2011, 19(4): 390-392.
- [16] 王欲琦, 史胜平, 梁红. 儿科疾病诊疗常规[M]. 北京: 军事 医学科学出版社, 2008: 334-338.
- [17] 蔡德培. 儿童性早熟与青春期延迟 [M]. 上海: 复旦大学出版社, 2003: 48-58.
- [18] CHOU R, BAKER W L, BAÑEZ L L, et al. Agency for Healthcare Research and Quality Evidence-based Practice Center methods provide guidance on prioritization and selection of harms in

- systematic reviews [J]. J Clin Epidemiol, 2018, 98: 98–104. DOI: 10.1016/j.jclinepi.2018.01.007.
- [19] PEARCE M, GARCIA L, ABBAS A, et al. Association between physical activity and risk of depression: a systematic review and meta-analysis [J] . JAMA Psychiatry, 2022, 79 (6): 550-559. DOI: 10.1001/jamapsychiatry.2022.0609.
- [20] GU Q Y, WU Y M, FENG Z W, et al. Dietary pattern and precocious puberty risk in Chinese girls: a case-control study [J] . Nutr J, 2024, 23 (1): 14. DOI: 10.1186/s12937-024-00916-6.
- [21] 罗璇, 胡蓉, 曾仙, 等. 中枢性性早熟对儿童生长发育的影响及其危险因素分析 [J]. 现代生物医学进展, 2024, 24(3): 582-586, 491. DOI: 10.13241/j.cnki.pmb.2024.03.035.
- [22] 李卫芹,杜悦新,宋泮泮,等.性早熟女童家庭行为因素病例对照研究[J].中国儿童保健杂志,2024,32(6):682-686. DOI: 10.11852/zgetbjzz2023-0706.
- [23] GAN D M, FANG J, ZHANG P P, et al. Serum 25-hydroxyvitamin D levels and the risk of idiopathic central precocious puberty in girls [J] . Clinics, 2023, 78: 100244. DOI: 10.1016/ j.clinsp.2023.100244.
- [24] DONG Y, DAI L L, DONG Y, et al. Analysis of risk factors of precocious puberty in children [J]. BMC Pediatr, 2023, 23 (1): 456. DOI: 10.1186/s12887-023-04265-x.
- [25] BIGAMBO F M, WANG D D, NIU Q, et al. The effect of environmental factors on precocious puberty in children: a case-control study [J]. BMC Pediatr, 2023, 23 (1): 207. DOI: 10.1186/s12887-023-04013-1.
- [26] 诸宏伟,严雪梅,郑迎娟,等.儿童性早熟相关危险因素的 Logistic 回归分析[J].包头医学院学报,2023,39(11): 51-54.DOI: 10.16833/j.cnki.jbmc.2023.11.010.
- [27] 汤陈璐,马世奇,李章,等.女童中枢性性早熟预测模型的建立及评价[J].国际检验医学杂志,2023,44(10):1214-1218.DOI:10.3969/j.issn.1673-4130.2023.10.013.
- [28] 车晓晴, 王沛, 李君. 学龄期特发性中枢性性早熟的影响因素及干预策略 [J]. 海南医学, 2023, 34(16): 2367-2371. DOI: 10.3969/j.issn.1003-6350.2023.16.019.
- [29] PANG B, WANG Q, YANG M, et al. Identification and optimization of contributing factors for precocious puberty by machine/deep learning methods in Chinese girls [J]. Front Endocrinol, 2022, 13: 892005. DOI: 10.3389/fendo.2022.892005.
- [30] 朱薇, 孟庆杰, 孙雅军. 儿童中枢性性早熟的特征及其发病的影响因素分析[J]. 临床医学, 2022, 42(8): 34-36. DOI: 10.19528/j.issn.1003-3548.2022.08.012.
- [31] 张苗苗,李利,刘梅,等.单纯性乳房早发育女童进展为中枢性性早熟预测模型构建[J].临床军医杂志,2022,50(12):1258-1261,1264.DOI: 10.16680/j.1671-3826.2022.12.14.
- [32] 张佳琳. 肥胖儿童性早熟发生的影响因素 [J]. 临床医学, 2022,42(9), 35-37. DOI: 10.19528/j.issn.1003-3548.2022.09.011.
- [33] 向静瑶, 王晓瑜, 徐开渝, 等. 儿童性早熟血清 IGF-1、FSH、LH变化及影响因素[J]. 临床误诊误治, 2022, 35(12): 63-67. DOI: 10.3969/j.issn.1002-3429.2022.12.015.
- [34] 刘丽芳, 金海菊. 儿童性早熟影响因素分析[J]. 中国妇幼保健, 2022, 37(3): 506-508. DOI: 10.19829/j.zgfybj.issn.1001-

- 4411.2022.03.036.
- [35] 刘桂华, 张晓燕, 刘静, 等. 江阴市学龄期儿童膳食模式与女童性早熟的关系[J]. 中国妇幼保健, 2022, 37(4): 660-663. DOI: 10.19829/j.zgfybj.issn.1001-4411.2022.04.025.
- [36] 黄婷,刘碧静.家庭因素及生活方式对特发性性早熟女童的影响[J].中国科技期刊数据库医药,2022(5):30-33.
- [37] 高海燕, 钟婕, 吴清芬. 儿童中枢性性早熟的临床特征及相关 危险因素分析 [J]. 现代医学与健康研究(电子版), 2022, 6(22): 134-137. DOI: 10.3969/j.issn.1672-1993.2021.07.043.
- [38] 干冬梅,夏科君,方洁.宁波地区儿童性早熟发生率及相关危险因素分析[J].现代实用医学,2022,34(8):1020-1023. DOI: 10.3969/j.issn.1671-0800.2022.08.016.
- [39] 竺益, 傅静芬. 舟山地区 4~12 岁女童性早熟发病情况及相关因素分析 [J]. 中国妇幼保健, 2022, 37(3): 515-517. DOI: 10.19829/j.zgfybj.issn.1001-4411.2022.03.039.
- [40] 严雪梅,诸宏伟,丁周志.80 例儿童中枢性性早熟特征及其相 关危险因素分析[J].新疆医科大学学报,2021,44(10): 1176-1181.DOI: 10.3639/j.issn.1009-5551.2021.10.016.
- [41] 许天友,留佩宁,徐仁福,等.人胰岛素生长因子 BP3、makorin 环指蛋白 3 在特发性中枢性性早熟女童诊断中的应用价值[J].中国卫生检验杂志,2021,31(1):86-89,97.
- [42] 王雪, 刘亭亭, 张立双. 儿童不完全性性早熟发生的临床相关危险因素分析[J]. 河北医药, 2021, 43(10): 1572-1575, 1580. DOI: 10.3969/j.issn.1002-7386.2021.10.032.
- [43] 满丽娜, 王坤, 栾馥, 等. 体脂比率及相关指标对女童性早熟的影响[J]. 中国妇幼健康研究, 2021, 32(6): 825-829. DOI: 10.3969/j.issn.1673-5293.2021.06.010.
- [44] 耿利娜, 薛征, 俞建, 等. 儿童性早熟危险因素调查及中医证型分布特点研究[J]. 山东中医杂志, 2021, 40(12): 1302-1309. DOI: 10.16295/j.cnki.0257-358x.2021.12.004.
- [45] 龚岱, 颜丽娟, 文湘兰, 等. 学龄前儿童性早熟情况及其影响 因素分析 [J]. 中国性科学, 2021, 30(9): 154-156. DOI: 10.3969/j.issn.1672-1993.2021.09.046.
- [46] 吴楚婷,曾维礼,刘湘.探讨不同年龄儿童性早熟影响因素及预防措施[J].广州医药,2021,52(4):10-13,19.DOI:10.3969/j.issn.1000-8535.2021.04.003.
- [47] 李长春,郑永华,沈红蕾,等.上海金山区儿童性早熟发病情况及影响因素研究[J].中国妇幼健康研究,2020,31(10):1301-1307.DOI: 10.3969/j.issn.1673-5293.2020.10.003.
- [48] 刘泽英,欧阳飞,陈磊,等.儿童性早熟与生活方式及家族因素相关性分析[J].中国社区医师,2020,36(11):30-31. DOI: 10.3969/j.issn.1007-614x.2020.11.016.
- [49] 刘海莲. 女童性早熟的家庭社会行为因素 Logistic 回归分析与 防控建议 [J]. 中国性科学, 2020, 29 (1): 153-156. DOI: 10.3969/j.issn.1672-1993.2020.01.045.
- [50] 李长秀, 庞金梅, 黄妙巧. 湛江市7209 例学龄前儿童性早熟发生率及危险因素分析 [J]. 广州医科大学学报, 2020, 48(1): 6-9. DOI: 10.3969/j.issn.2095-9664.2020.01.02.
- [51] 盛美玲, 杨素红, 陈灵红. 杭州地区特发性中枢性性早熟女童的临床特征及其影响因素分析 [J]. 中国妇幼保健, 2019, 34 (20): 4768-4771. DOI: 10.7620/zgfybj. j.issn.1001-4411.2019.20.56.
- [52] 冼雄辉, 张龙江, 杨俏文, 等. 快速进展型中枢性性早熟女性

- 儿童的病情随访标志物分析 [J].中国现代医学杂志,2018,28(34):103-107.DOI:10.3969/j.issn.1005-8982.2018.34.020.
- [53] 王琰华, 赵忻, 刘冀琴. 天津市女童单纯乳房早发育及特发性中枢性性早熟发病危险因素的分析[J]. 中国儿童 保健杂志, 2018, 26(4): 444-447. DOI: 10.11852/zgetbjzz2018-26-04-27.
- [54] 黄坚. 上饶区域儿童性早熟的流行特征及相关危险因素研究[J]. 中国当代医药, 2018, 25(4): 135-137. DOI: 10.3969/j.issn.1674-4721.2018.04.041.
- [55] 赵志红, 迟亚松, 彭富栋, 等. 影响女童发生特发性中枢性性早熟的相关因素分析 [J]. 中国妇幼保健, 2017, 32 (9): 1917-1919. DOI: 10.7620/zgfybj.j.issn.1001-4411.2017.09.33.
- [56] 杨挺, 王明欢. 儿童性早熟与影响因素的调查分析 [J]. 中国 妇 幼 保 健, 2016, 31 (7): 1510-1512. DOI: 10.7620/zgfybj. j.issn.1001-4411.2016.07.62.
- [57] 杨章萍, 郑晓萍, 张旭慧, 等. 女童性早熟的影响因素分析[J]. 中国学校卫生, 2014, 35(1): 133-135.
- [58] 陆丽芳, 应立绒, 胡坚锋. 诱发儿童性早熟的非疾病危险因素调查[J]. 中国公共卫生管理, 2013, 29(2): 290-291. DOI: 10.3969/j.issn.1674-3865.2011.04.038.
- [59] DENG F, TAO F B, LIU D Y, et al. Effects of growth environments and two environmental endocrine disruptors on children with idiopathic precocious puberty [J]. Eur J Endocrinol, 2012, 166 (5): 803-809. DOI: 10.1530/EJE-11-0876.
- [60] 欧阳春花, 王予东, 贺红梅, 等. 开封地区儿童性早熟危险因素的调查 [J]. 河南大学学报(医学科学版), 2003, 22(4): 65-66. DOI: 10.3969/j.issn.1672-7606.2003.04.032.
- [61] 杨菲,马薇.青春发动时相影响因素研究进展[J].中国儿童 保 健 杂 志, 2024, 32(1):64-67, 72. DOI: 10.11852/zgetbjzz2023-0251.
- [62] VURALL1 D, ÖZÖN A, GÖNÇ E N, et al. Gender-related differences in etiology of organic central precocious puberty [J] . Turk J Pediatr, 2020, 62 (5): 763-769. DOI: 10.24953/ turkjped.2020.05.007.
- [63] ABDOU L W, DAOU K N, BOU-ORM I R, et al. Is menarche occurring earlier among Lebanese girls? [J]. Rev Epidemiol Sante Publique, 2019, 67 (6): 393-396. DOI: 10.1016/ j.respe.2019.07.007.
- [64] WEI Q, WU M, LI Y L, et al. Physical deviation and precocious puberty among school-aged children in Leshan City: an investigative study [J]. J Int Med Res, 2020, 48 (8): 300060520939672. DOI: 10.1177/0300060520939672.
- [65] HAMILTON J L, HAMLAT E J, STANGE J P, et al. Pubertal timing and vulnerabilities to depression in early adolescence: differential pathways to depressive symptoms by sex [J]. J Adolesc, 2014, 37 (2): 165-174. DOI: 10.1016/ j.adolescence.2013.11.010.
- [66] STREET M E, PONZI D, RENATI R, et al. Precocious puberty under stressful conditions: new understanding and insights from the lessons learnt from international adoptions and the COVID-19 pandemic [J] . Front Endocrinol, 2023, 14: 1149417. DOI: 10.3389/fendo.2023.1149417.

- [67] NASIRI S, DOLATIAN M, RAMEZANI TEHRANI F, et al. The relationship between social determinants of health and girls' age at menarche based on the World Health Organization model: path analysis [J]. Heliyon, 2022, 8 (10): e10794. DOI: 10.1016/ j.heliyon.2022.e10794.
- [68] SHIM Y S, LEE H S, HWANG J S. Genetic factors in precocious puberty [J] . Clin Exp Pediatr, 2022, 65 (4): 172-181. DOI: 10.3345/cep.2021.00521.
- [69] 许晓琴, 章建伟, 陈瑞敏, 等. 中国儿童体质指数与性发育水平的关系 [J]. 中华儿科杂志, 2022, 60 (4): 311-316. DOI: 10.3760/cma.j.cn112140-20210906-00754.
- [70] SHI L, JIANG Z Y, ZHANG L. Childhood obesity and central precocious puberty [J]. Front Endocrinol, 2022, 13: 1056871. DOI: 10.3389/fendo.2022.1056871.
- [71] JESSEN E, VETTER C, ROENNEBERG T, et al. Sleep timing in patients with precocious and delayed pubertal development [J]. Clocks Sleep, 2019, 1 (1): 140-150. DOI: 10.3390/ clockssleep1010013.
- [72] GOHIL A, EUGSTER E A. Delayed and precocious puberty: genetic underpinnings and treatments [J]. Endocrinol Metab Clin North Am, 2020, 49(4): 741–757. DOI: 10.1016/j.ecl.2020.08.002.
- [73] GUI Z H, LV M, HAN M, et al. Effect of CPP-related genes on GnRH secretion and Notch signaling pathway during puberty [J]. Biomed J, 2023, 46 (2): 100575. DOI: 10.1016/j.bj.2022.12.003.
- [74] LIU Y P, CHENG Y Y, SUN M, et al. Analysis of serum insulin-like growth factor-1, fibroblast growth factor 23, and Klotho levels in girls with rapidly progressive central precocious puberty [J]. Eur J Pediatr, 2023, 182 (11): 5007-5013. DOI: 10.1007/s00431-023-05174-y.
- [75] SØRENSEN K, AKSGLAEDE L, PETERSEN J H, et al. Serum IGF1 and insulin levels in girls with normal and precocious puberty [J]. Eur J Endocrinol, 2012, 166 (5): 903-910. DOI: 10.1530/EJE-12-0106.
- [76] DING Y, LI J, YU Y G, et al. Evaluation of basal sex hormone levels for activation of the hypothalamic-pituitary-gonadal axis [J]. J Pediatr Endocrinol Metab, 2018, 31 (3): 323-329. DOI: 10.1515/jpem-2017-0124.
- [77] 唐家彦, 黄娟, 黄连红, 等. 中枢性性早熟女童血清 miR-125b 与维生素 D 联合检测的临床意义研究 [J]. 中国全 科 医 学, 2019, 22 (9): 1047-1051. DOI: 10.12114/j.issn.1007-9572.2018.00.342.
- [78] VILLAMOR E, JANSEN E C. Nutritional determinants of the timing of puberty [J] . Annu Rev Public Health, 2016, 37: 33–46. DOI: 10.1146/annurev-publhealth-031914-122606.
- [79] CHEN X L, FUS M, CHEN C J, et al. Association of traditional dietary pattern with early and precocious puberty: a population-based cross-sectional study [J]. Pediatr Res, 2024, 96 (1): 245-252. DOI: 10.1038/s41390-024-03110-w.
- [80] CHEN C, CHEN Y, ZHANG Y T, et al. Association between dietary patterns and precocious puberty in children: a populationbased study [J]. Int J Endocrinol, 2018, 2018: 4528704. DOI: 10.1155/2018/4528704.

(下转第 2685 页)

- (PF-06882961) in type 2 diabetes: a randomized, placebocontrolled, multiple ascending-dose phase 1 trial [J]. Nat Med, 2021, 27 (6): 1079-1087. DOI: 10.1038/s41591-021-01391-w.
- [6] SAXENA A R, FRIAS J P, BROWN L S, et al. Efficacy and safety of oral small molecule glucagon-like peptide 1 receptor agonist danuglipron for glycemic control among patients with type 2 diabetes: a randomized clinical trial [J]. JAMA Netw Open, 2023, 6 (5): e2314493. DOI: 10.1001/jamanetworkopen.2023.14493.
- [7] SAXENA A R, FRIAS J P, GORMAN D N, et al. Tolerability, safety and pharmacodynamics of oral, small-molecule glucagon-like peptide-1 receptor agonist danuglipron for type 2 diabetes: a 12-week, randomized, placebo-controlled, phase 2 study comparing different dose-escalation schemes [J]. Diabetes Obes Metab, 2023, 25 (10): 2805-2814. DOI: 10.1111/dom.15168.
- [8] PRATT E, MA X S, LIU R, et al. Orforglipron (LY3502970), a novel, oral non-peptide glucagon-like peptide-1 receptor agonist: a phase 1b, multicentre, blinded, placebo-controlled, randomized, multiple-ascending-dose study in people with type 2 diabetes [J]. Diabetes Obes Metab, 2023, 25 (9): 2642-2649.
- [9] FRIAS J P, HSIA S, EYDE S, et al. Efficacy and safety of oral orforglipron in patients with type 2 diabetes: a multicentre,

- randomised, dose-response, phase 2 study [J] . Lancet, 2023, 402 (10400) : 472–483.
- [10] WANG X Y, YUN Y, CHEN L L, et al. A novel approach to exploit Small-Molecule glucagon-like Peptide-1 receptor agonists with high potency [J]. Bioorg Med Chem, 2024, 107: 117761. DOI: 10.1016/j.bmc.2024.117761.
- [11] CAO S J, XU S, WANG H M, et al. Nanoparticles: oral delivery for protein and peptide drugs [J] . AAPS PharmSciTech, 2019, 20 (5): 190. DOI: 10.1208/s12249-019-1325-z.
- [12] NAUCK MA, QUAST DR, WEFERS J, et al. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: a pathophysiological update [J]. Diabetes Obes Metab, 2021, 23 (Suppl 3): 5-29. DOI: 10.1111/dom.14496.
- [13] GRIFFITH D A, EDMONDS D J, FORTIN J P, et al. A small-molecule oral agonist of the human glucagon-like peptide-1 receptor [J] . J Med Chem, 2022, 65 (12): 8208-8226. DOI: 10.1021/acs.jmedchem.1c01856.
- [14] FEDIUK D J, GORMAN D N, STODDARD S A, et al. Effect of renal impairment on the pharmacokinetics of a single oral dose of danuglipron in participants with type 2 diabetes [J]. J Clin Pharmacol, 2024, 64 (4): 449-460. DOI: 10.1002/jcph.2371. (收稿日期: 2024-09-11; 修回日期: 2024-11-25) (本文编辑: 赵跃翠)

(上接第2671页)

- [81] WANG M J, ZHANG Y J, MILLER D, et al. Microbial reconstitution reverses early female puberty induced by maternal high-fat diet during lactation [J]. Endocrinology, 2020, 161 (2): bqz041. DOI: 10.1210/endocr/bqz041.
- [82] ALCOCER ALKUREISHI L. Central precocious puberty and blue screen time in rats-an endocrinologist's thoughts on what this might mean for pediatric patients [J]. Pediatr Ann, 2023, 52 (1): e1-3. DOI: 10.3928/19382359-20221206-01.
- [83] LIXL, ZHUHJ, ZHANGQ, et al. Continuous light exposure influences luteinization and luteal function of ovary in ICR mice[J]. J Pineal Res, 2023, 74 (2): e12846. DOI: 10.1111/jpi.12846.
- [84] CHIOMA L, BIZZARRI C, VERZANI M, et al. Sedentary lifestyle and precocious puberty in girls during the COVID-19 pandemic: an Italian experience [J]. Endocr Connect, 2022, 11 (2): e210650. DOI: 10.1530/EC-21-0650.

- [85] SHOKRI E, HEIDARIANPOUR A, RAZAVI Z. Positive effect of combined exercise on adipokines levels and pubertal signs in overweight and obese girls with central precocious puberty [J]. Lipids Health Dis, 2021, 20 (1): 152. DOI: 10.1186/s12944-021-01588-5.
- [86] CHEN Y, WANG Y C, DING G D, et al. Association between bisphenol a exposure and idiopathic central precocious puberty (ICPP) among school-aged girls in Shanghai, China [J]. Environ Int, 2018, 115: 410-416. DOI: 10.1016/j.envint.2018.02.041.
- [87] SYMEONIDES C, AROMATARIS E, MULDERS Y, et al. An umbrella review of meta-analyses evaluating associations between human health and exposure to major classes of plastic-associated chemicals [J]. Ann Glob Health, 2024, 90 (1): 52. DOI: 10.5334/aogh.4459.

(收稿日期: 2024-10-11; 修回日期: 2024-12-13) (本文编辑: 康艳辉)