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Abstract: Prompt engineering (PE) based on prompt learning is crucial for improving the technical accessibility of LLMs
and accelerating their adoption, diffusion, and application development. Compared with traditional PE, which heavily relies
on the domain knowledge and experience of prompt designers and is less adaptable to tasks with large prompt spaces,
automatic prompt engineering (APE) can generate or optimize prompts in an automatic or semi-automatic way. This
enables the exploration of large-scale prompt combinations and enhances the stability of prompt generation through
automated optimization techniques. However, there is currently a lack of systematic reviews on APE, which hinders
subsequent researchers from quickly grasping the state of the field. Therefore, this paper keeps up with the latest research
developments, systematically reviews the implementation forms of automated prompt engineering, and proposes future

research directions. Based on the trade-offs in logical reasoning and performance orientation in the implementation of a
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APE, this paper categorizes it into four main types: APE based on chain-of-thought, APE based on machine learning models,

APE based on evolutionary algorithms and plug-and-play auto-prompt systems. Subsequently, this paper conducts a

comprehensive evaluation of APE techniques, constructing a theoretical explanatory framework for their working principles

and assessing the applicability and limitations of each implementation form. Finally, this paper looks ahead to the development

trends of APE in multimodal large models, advanced reasoning models and AI-Agents.

Key words: large language models; prompt engineering; automatic prompt engineering; chain of thought; machine learning;

evolutionary algorithms; plug-and-play systems
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Fig.1 Framework of automatic prompt engineering
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Fig.3 Basic process of APE
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Fig.4 Classification topology of APE
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42 19F0 APE 5535 al JHPERS e
Table 2  Usability comparison of 19 APE algorithms

ST mafift EFITBE RS LLMIZRE
Zero-shot-CoT N N v
Auto-CoT N x N
Active-Prompt N x v
Automate-CoT N X N
AutoReason x X x
RLPrompt N X N
TEMPERA N x N
ProTeGi N N X
RePrompt N N X
APEer N X X
OPRO N x x
PE2 N x x
APS N x x
PB x N N
EvoPrompt X N N
GrlPS N N N
LongPRO N x N
BPO N N N
PAS N N N

BRI, BAESE 0 H b2 T 5 RS AR
HIREST, Riad I — R0 %E S D IR A A %
HEZR A (DRI M W2 DR E5)
fiff Ay TR PRSI R T R
TR Z M L SR B AP R TR B UR . (2) AT AR R
Pk DG AHERD B, PR AR A S R i
HIRE T R RS IEHERRES 152 . (3) 1 F SCRIH . it
FE iR il g | B GERE P51, BB REAE I T AR
oA SR R AR

BEE IR A BAEREBOR B O 3R T RS =
PEAYTE S Z MR T 55 Th R By EE 2 T HP, B T80
A AR Bk Uk B E F IR EE S A R SR,
Ji 46 e U A ORI A AT SR P 2 M M (P AR Lt i
AL RIMALE, ik, P E RS T 25 B sk
ARPR, SR HERY (tree of thought, ToT) | JEL 4[] (graph of
thought, GoT) A1 )21 4 € fi# (diagram of thought, DoT )4,
XA RGO 17 MRS (XoT) 7,

(1) B4R} (ToT)

SR 38 o A R 25 95 | ARHE R,
R RIE TR T — AR ) M EAE SR LR
O AR S A e R R 24 ), O DARPIR
2 21 2 30k S [ T, fofi AR TR BB A PR AR AN () 118 4 B
B IEHAT IR . B TIPS A BT A SRR . X SRl
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PR 45 K8 AR A AE b 2R 5 20 AT 55 R XA T 55 i) 2 AT 2
Do, Refs A AR THE BRI PERE

SEAER ) — D L RTE T, BB RS T
F AR M RORZE A HEA TR . S R AR HE R T AN
], SRR BRAS VTAG T 1 B 22 SR FE R A , EA TS 14
Ko BN, R R BUR A, A RE A AN [FI AR A
BR e Bei A T el ] ER A R AS . Ak, SRR
MEZE SR Z A R, an) ™ BEAR 5648 2 (breadth-first
search, BFS) F1R B 1 /0 1% 4 (depth-first search, DFS) .
BFS 7Ef— 44— i A AT RERPIRES , 1T DFS NIV
A A B EARIRAR R, HEHR BB ZS0FAE 2R E T
fiff o X RGPS AR RE IS AR (D] B AR, IR
FHZRACE , DT 3 L7 AN [R) A 55 i ] g,

(2) B4EE (GoT)

FHEL T 254, B 455 A T 3 B A #Fh 2
), (AR R A b AT 2% [ RS A AT SIS 1Y JEL 4 )
2 O SE — R AN AR A 4 i Se A VL 22 1]
AR HIELE RIS Re i T A KRB, IFR
PEE RN A T B AP,

SEGE R RS B S5 AR L, R A5 At T
e I R TGV IR RE T, REAS A EE 21 0T = & 22 AR
FE BN, TEAL PRI 44T 55 B RE A% S T A 55 1y
PERE , PR B BN B S A HUL N SIS A e B % () R g S
ISUy i

SR, RS I 25 A AR R E e | B W2 i3,
{HAESZ BRI o TG 25 PR AR . [R5 A AR R —4F
VI RE AR IRTEAT: 55 8% T AEAE SR BRAE , 5 EE AT R E AT
St BRI R84 X BRI T R . A,
P25 K 119 52 2 1 BB 1] R 5 35022 2 AN [m] B I
A2, T T A B o ) 4 B AR | S5 M S A5 4 2L ) 208 3 A
CIE/ NS

(3) 4 Ef# (DoT)

Ik H01 2 B - A Y AT BRSO T — Rl 44 Dy SR
P& i BT HE B2 | 33K 2 — B A i N T RE AR FEAE 42,
B3 o AE R YR A ) TG BRI (directed acyclic
graph, DAG ) RAAU ST F AL ) UHE LS R . 5
TG PR IR S 2 P e sl 9 T A ), SR 5] i
KA HEVT AR R ISR A SR — A BRI TE A
K288, SRV AR AR ORI B — SO 1 [ R R A 2R 1)
(L 5 S AR = B W ARt W 7 11190 NS 5 21
B UE A, i LLM g i 1 AR5 7 stk A ek
HEFCAHER

YRR A B 30 R E S — 2 R0 AR E A
A R A E T B R AR RN ) M PEA 2 1] () Jo 4 Ak
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P AR T R S R R R R A, SRR
FEAEALE NI Ee R T TR U, B T —
FEA, B R B FR 2 B — B A e . RO
ok 7 A LLM N B IR A B R THBR 1 X% 24>
BB A MR SR 15K

(4) B 4ELZZ X (buffer of thought, BoT)

SEYEGE W IXAHEAL B b R I R 224 e R 5345
FT AR R A AT AR Y B A R T R
BEARITEHERRAT 55 rh O MERA ME R E . IZHESE S |
AT WA O u% b X (meta-buffer) FIZE i X 45
PRZR (buffer-manager) . TGZ% 1 X2 B AR 27 b X HEZL (1)
Wl A7 — FR 5 2 B AERTAR , 1 SRR A YR T 45
R4 e, B BRI BT, RSk R ARG
B, AR R LA 100 14 738 07 S 48] £k, DT S B0 /=
RUHERR I FRARALL 1 A SSAE TN [t andef i Bl
BEA 2290 PR A SNy o 2 i DA B DU 7 3 s AR T
BICGEPIX BEE AT 55 I HEE AW R R A ). X —
ST LGS B R LE vh X REASHrLE 2] 3 AT [A]
LR RGN AT v AR e M

SRR vp X AE SR AE 2 R AR AT 55 R R B
RIS R R S TR P AR T . S
L5 1) SR D A L, JE 5% v X I 2 AR T B
A R I ER T TR T . X —HEAANAE AL B AT 4
FHAT 55 i B0 1 O o A A 1 8 L TR A 72 1L
71, BEREIE N Z AL R A 5 . b B4ESE b IX AR
BRI T R B , RRAEAT BN X g AR AL AN
FEME , DI 5 1 RS0 ) e (AR PR R AT Sk
312 FAEARLEEER R

Kojima 5 NP4 T — 5L T A ABR A= i #E
PR AEGE ) A st X, RER A B 4E B4R (zero-
shot-CoT) o X FP4/R a4z BT AT E 2 54145 T8¢
(1), BRI AN S A0 1/ IMEAS s 491, - BT DA H 5
ABEMRAET 2 BIAT 55 P AR (A A ) A 3 P ML

7 B U AR T 5 AR R B SR AT N
“Let’s think step by step” SIS LAY SCAS | LA (AR 8 5%
A, X5 Z AT E T TEEN D R AT I
SERAXT LG o SRR, (TR — SR AR ) A A S 4
PRI i 1R A T IR D REAS R 1 0 1 Dl
T, BER TSN EREARLLM aE. HEE TR
AE5E PR A AEHE AR AR A R ILA o T, X
— RN T LLM 7E R AT 55 h A9l 7250 A
(Y 7, 2 W3 I 7 B A B R AT AR s g 24T 55
() 1Z NI RE

SR, 3Ky FORE R YR BE PR 18] Tk v H 3
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LLM A, SEBE 1 3 TR FEASR 1Y 1 o) B g4 1 3 42
7N X TFRMR AR R R T s SR 5T 1 A

SR, FERE A A B J7 1 AE A 3 24 AT 55 AT
FEAE—E R BRYE . it , ok F B A28 5% R BT 2 B
MBS T4 T — B A A B R AR Y R 48 Auto-
Reason”, 5§ 7EH 78 LLM 1) 2 20 Fa=CHE B RE 1™, HAX
O JEAER R B B i 2 2 A i) 0 i ol — 3R 51 W ff 4 [ A
AR B (GPT-4) A BUEAN B HERR L | SR 5 i 055
FERY (GPT-3.5) 2 TaxX LU IR AT 1 25 58, AT B A 1l
e

AutoReason if itf DA T AL BRSEHUHL I BE - (1) B LR HE
PRAE I8 B0 P I R RE AR A i, ) s A Y A 1) 25
et A GE PR L IRAT— 2P — T 5
S HA I TR A HERREE , (2) ML . AWIER HESE rh
PEBOCHIP TR U — RPN T, et BN 2R B
O A A R T A 3 W R ) R (5 TS A A fig
o (3)F IV BAR2ZL o ol ARG 55 553 AR A U 14— [l 28 1
[, A AT TAE R RE T, i D T X
E PERERE R R, 5 T RARCR (DB RES. T
ST IR 24 58, T T i s A 1) 1) s B i 2, i O
LB R 0T M RER P

AutoReason I T NEREALL R [ 24 %t 4
AN R AR P AR kG T TR R B B T
B XFh A AL T LLM 75 245 HEFRAT 55 R i 1
AE , F5 )2 A StrategyQA S B4R R I (@, if 4% 5
TR AT R
3.1.3 D EAEABYERR N

A 2 B 4E4% (automatic chain of thought, Auto-CoT)
FASE P S O 0 AR |, e i R B 4R
PRAFAARL [ FIEE, I A 2= A s B i B 4E5E . LLM
VER AL G5 RTS8 36 AT ] RE S AEHERRBE
HREET, O T IR P A R 1Y 20 , Zhang 45\ P
b B SCEE AE — FR AN AT IR T ) A OGP R
B A BT, PR BT IER T —Fh B B R
BEYR R 7L Auto-CoT.  Auto-CoT 3 iz Z AP Al 7] f5t
IF A B AL N

Auto-CoT i 12 [ 2l AE Jl e 7 e 4t v 5 U R ) 1
fe. T E AN T RN S T AR R AN TR
HLRFE . B4 11# H Sentence-BERT X [n] @il i#E 17 4wt , I
it GPT-3 AE MRS . SEER A5 IR W, BE T AR IR A
R NSRS O T R 25 A0AEA N ThRvE
IESL R, R TF TR . X RIS TAEMRL
PERT R B AR N TERA R AR A bR 1 1
BUT, B sl Az Bl 3 B 3 B0 R AR, JE HOR AR [ 2 A
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PEFRAFERR AT B 705t o Bt 327 F X
HERR T A RO , e B R A SRAR LTI APk
Hh T BN A TEIHE T Auto-CoT il OB , 045
Jnfuf ik RS ARG N (n) 2R, AR ] i R 7
P IR 2 IR Do/ Dt R HE R Y A B

Auto-CoT 747~ i M it 7 (9] vt Fl T Z2 PR
W, T ZFEE R RIS OR 15 B R ARRAIC. IILhE
TR F AR P R AR R PR 1 T i . Diao 58 A$2
TR F3hR7R 1 (Active-Prompt) L 4 4%
P, ST K B AR I I T AR 1) 4 R 1A R
RIS T T ANEA PR (14 3= 32 >0 AH DG [n] Y
AL, SIA T LA b R R AN P, DU R AN
R 1) [P SR T R

F 57 > (active learning) Z AL A% 2] H (1) —Fp 3
W, E Fe VB AR I S 72 o B Sk B, AT S
TR ZR . SRS I B T M L, 8%
REAE 10 2l N TARTE IR P A, P AL 0z L g
1o BTN EE 7 118 7R 7 5] 25 M 1) g 28 A4 i
I TR R S T 2 Bl 2T 3 A AN s P ok R B
AWMENREARG] . fEReE RS b i A SR il
N CBE 0 S AR B R R, LLM o 4 7 1] v g 4
PRI FRAE ST RS SR A B

Active-Prompt HEZRFESLHL |5 F28h2= ) iy B2
fBL, 43 SR U A B B S B« ik B B IR BR R B R B
FHERRRY Be o 1 JE e B & B BOF TR A LA RE A/
AR EYERE T N 2R 8 T B [ A T 2 UCRFE, LA
THHBA LRI E bR, B, fEE M B, BT X
SEFE bR, HEZRTRGE T B AN 1 IR LS N TR .
B B B, Bl OG5k 26 [ B E A 7 40 B AR e, A
RUPRUE T R SN GR BTG o 52 e BB B, ARl
FHIXSEF AR T 8 1R MO HAERRRE ) o teAh, A Tie
T I 20 A BT AN [N S PR R A R/ NS AR IR
WIZ T A R

SRR, Active-Prompt H 3 TN & M) 8%
TR AR S | AR R 2, Ry SR B s s 151 1)
HIESRAE TR 7 =X, ik B 445 11 APE £ R T4
TR R B
3.1.4  SafEp AR RERE R

L T D R A S R B ) O SO T
Fe o (A AR N 1] T — BRI Y R T A TR Y
AR AR, A BR A i 4R 1 R = A
TARA M . PRI, Shum S8 NPHE T 5 A /s 4k
5, HoAir 44 4 “ Automate-CoT” J7 ik, SE 3 T AEA -
TBAHARMET i A g kA U R A




Hh | &N

3140

Journal of Frontiers of Computer Science and Technology i+ ENEFEEHR

2025, 19(12)

Automate-CoT i 347 FR A b5 v A da 45 B a4 mii i
PR A 7 220800 58 W B B A AR e B, AT 52
WA AR s . BRSBTS (1) A s A 2
B M HEERR B T A S A BT AR R , 3 AT
PRERAS SR THE 7 A RE ). (2) I BREE BYAL . i 1 /=
Jo e A R, S B AP O e 0, A A e . (3) 3Rk
2 Ak I Oy 200 S T i R A
BEL G ARSI I DO S B

zE W], Automate-CoT 5 ¥ 7E 22 Fh #E FIAT- 55 LU
FAEMEEAT 55 h YA B W R AR T, 5 E8h
SREMEAH EL , R 58 4 B sh A% Jr i HLag B 38 FH PR A
W AYE A BT R T A TR, IR EA TS L
SEIHERRMERE PR T o X — SR SRR AR AR AR
AVERMEAL T T2 BT
3.1.5 /hE;

5 0 BHESER R DL TE APE N F A4 8 4k B 4
ARAGHHE] & ke . 33 RR T S P T 0 b F R 1)
APE 7 2> BRI R B AR 1 1 P Y ki e, ik 24
(RIS AN B RE A O F8 AR , TR R R A 3%
T B AEAH LA 55 1 1 A o [ S B ik . HLAAR 314K
PEHE , GSM8K/AQUA %k 45 32 2L I B#/3% /4 L )
L, StQA RS B IR M) 8, LETTER 2(4E
RIS AIREF I,

SR, T EYERE 1Y) F Sk TR &
Jre HAT B S s (R, D B B3 PR A e N T 971 14
PERBEY R A L FEREASE R A A Sl £

FESE R 010 A S AL HEoR , 1520 50 538 N P Y 32 o 4
N AR ST R B Y F B R RO A RS A A P i
JI0) A S AR . X ST VAR W I A IS [R) A R
JP R 8 4 .

(1) A bR EE . F0 05 g RO T3 A
B, MiJ5 22 1Y Automate-CoT %I AutoReason i # i /> T
N5 T H 3 ibKF.

(2)Bda K o Bl 5 2 BT, AR I B AR
R AR, SRR A A SRR B E AN i
AR Z AR I T ThRIE K

(3)iE R . B R T TSR R Bk 20
T HREESS M EREASE R SO 5 2kl ke iz
B4 RIS, BT R A

A BT T — 2D BT S (9 A, 5 1) 555
WB RN TC W Tyl A fE . BRI [ Sk AR ORI
PORIA MR T, R T B 4ERE A shibHim TR A
HEETEE ] Z 24155 Y s h s v o
3.2 JEFRMLAE TR APE

Kl 6 JieoR 1 2L a2 S A58 APE S8 7 = s [i]
RIEIKES AT PEAIERTT X 8 Bl APE IHER A 1Y, 31X
S0y ) 32 DXOIAE T0 4k B 7= 1 e 1 A 1 s R
A H A DAL S X T IR IR R it 5% 35 ] LA
FHAS Y P AR S B BE RN R4 A 240, AT AR B
EEBERE O OE E N E N e G I S o | AT R DN (= AT e =33
(I T7 5 AR R T BT — A7 1 DSk [l i 38 5 14
AR SR SRR B B R R 1A T T AT IR AL

5 IMAeREEEA K AL APE Sh ity IN ) % Jig
Fig.5 CoT and its timeline in APE field

3 LT INEER APE fig )Xt e
Table 3  Ability comparison of CoT based APE

T . SR % A
ST EETEN TR SRR
GSMSK/AQUA StQA LETTER
Zero-shot-CoT = 40.7/33.5 54.8 — SR A R
Auto-CoT P 47.9/36.5 65.4 59.7 AR R A 1
Active-Prompt & 73.2/50.3 76.9 67.7 F By ) T B 1)
Automate-CoT A 49.7/37.9 — 58.9 ks > BT SR s
AutoReason N — 91.6 — SRR T S AR 4 B
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Fig.6 Timeline of APE based on machine-learning models

T e L 0 D), W9 8 i R AN [l 8
2, Horh— Rl Al A7 09 07 SR T SCASRE BT ke SR
RPN . TR BRI A X A SCARBRBE S T
BUERR B IS (H S EER N ER B BEAN TR, B AS E
85 e A AR 250 B, T2 T 00 S A B R 1R Y
CEERTBOARIE 2 AL . 20 BE SR E TR B bR
LLM fAE—A 26 il it 5 —A> LLMAE IR Ab s R4
ANTEE SRR B AR T R SR SEOR L, i
2RI, DA B L 4R 10l
3.2 JEpiieE>d

i fk 2% > (reinforcement learning, RL ) il 1 5 #1135
M AC B2 2] A R B T8y, AR KA BRI i, 5
W2z 2 AN TR] i b 2 O BB R A 2 4580, 1 A
IR AAEE L A, B0 R M LE T Tl REfg A ok T 2
FYREIN Sk 2T ) H bR i AN T R SR, R
REfS e KA TR 91T 3751

76 LLM (4 s il i it v, s b ) U HGE T 2
AR AT AR — S8 AP 0 i A, o R4
71N TS AT RE S M B e [ B i . PR, SR Ak ST fiE
BB 1) A R R — A P A DS Tl , 88 g i ik 7y
SRR YRR S R B R 2R S, AT IR R
AR IS i 1 o i

Deng %5 N4 T —Fh I8 T 5 Ak > 1 B UK
PR 77 RLPrompt., % 5 RO 2— S50
R WS P 255, 283 I 25 Be S A i R 1) i icHe
o AT HEIILRE, RLPrompt 5| A T A %2 Jil
FOEALEAR | B TERIN KR 5 B R h R il {5 5 2
Ze P FNFEALYE . RLPrompt 78/ A 2 AN JC a7 SeAS
WA IERAT 55, I 1A T B oA sl e m ik iy
PEfE. — AN RIS, R E BB R RS
TR R ELTE , (HX S /R AN [ AL 2 [A] B B i vl
R e OR B AH YRR B R PERE , X R RIS F LA
PIFE IR A — i AR A RIE F R

SR U, RLPrompt A FH s Ak 27 > DA B HOCA
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P27 I SR — SRS 46 2 SRR I 4 B 20 5
BERIAE R AR 55 LRI IR . XA R AEAR TS5
FRRY | S T O PERE . SR, 3 5 v i Ry B A
T, BT RSN AR B X BE AR 4 1 245
AT TR | Jok S i A B AL

5 Z AR, M g (test-time editing) f&—F1 3]
DI RE I B VR A AR
SR R R T, DA T B e B i o Bt . X
AT A AR R MR g T AT P e o SR 0 R R fp
TR, DT B A A5 i 2 ) A

2 F UC Berkeley ) Zhang %5 N\ T —Fh LT
5 A 77 2 180 3 I 2 179 HE 22 (test-time prompting via
reinforcement learning, TEMPERA ) , 25 & T il fb 27 > £
A FI IR g A A R 4R . 5 DAERFSY
ANTA], TEMPERA i it 75 9 4 o e v R A A JR0 AR OG5
BT T RGN R EERERE . ZHEL VRN
IRBT B GG B R A T 4, AT AR B TS 5 R A i)
AR

TESEI 7 1], TEMPERA K Gt 2 i A8y — >
JRA KPR R A RS EIE P G R fidoif) . 7ET
AL RLU AR B2 W] s £ gm iR 20 A, A1 FH T
Y1 5 AR Y feJa BRI SR RS R . XAk
THOR T St FEREAS AR 2 R SUfF B, dE i = 42
0L PS8

SERS RIBOH & 2 dm i HOR |, IndE 4 i | T
T SORBIRHESN B A AT o X8 73 ) g A
FRHR B8 AR I 1 H AR i R oK, B il 5 1 i
=, LA e 2 i o ML U3 o TR Y PR
HEi— MR Z Wm0 5, 51 A A b e
FEARINIT M7

TEMPERA R JH: TV B8 70 i SRS A | 8 G OGTE
A B i BB s 01, ol A5 C PR BE IS AR H5 5 2 ) 1 A
RUPEFEAT AL . 38 X 261 11, TEMPERA 1E 21>
TS T ROR T OB BRSO RSO Mt T B
T8 N R B IR T AR R A ARIE S
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AR AR AR
322 JEFCARBRIE TR

FEAILAR 27 2] sk, BB BT B 3130 K pR L
AP B BT AU ) S50, 325 Dl DR i 1 5 LS
B2 AR 22 o $oR TR O Ab SIS SCAR Ao A i S 8K
(BB B TR D125, 6 SCAR 23 [ 3 e ASADUR0 B T Bt Ak
PEoRiAl, AT LUE R R R A B S ) () RS b B N
PR, SR MR DR R TR 2, DA AR A AR A
HEER . A Azure AT AFE T — Rt T SCABA R )
IREALHEZE (prompt optimization with textual gradients,
ProTeGi) , HI T F 2h ik LLM A4/ 1),

ProTeGi J& — Ffi i It FL i 20 B sh ik $E = 4 7
oo AL SCARER BE TR S B MR R . TERE—
o, B s AR AR 2 o0 MRS R A i = A R
TR i 28 Ji R A BB B4R, AT T LLM 76 HL{A
1E55 R . ProTeGi B FE I8/ N T35 1) Z B i
T, A Sl A 5 R A PR, N ITTBE =5 455 19
PERE . IR AR 24 TR SR o LLM PR
AT T o LM AR ) [ SR1E 586 A i
R HEAT AL, S A lad APL S B . Bk
it , ProTeGi UL RN T - (1) A= BSCABAE . B
Se At FH /NI SIS A 1 SRR B, B LLM G 7 157
HIHEPE , 78 AT 55 2R 2 2 Ak o (2) 3 did . ARAEE
B B AB TR R i), 51 A1 IR AR AT T A Ak, (i 3
7N SE A A R I (3) SRS AV R AL . Tl
R AR SR I R A R, i — T
BACR . XA RS U U TR, A Bk
Fo (Ot et REMATIRAEER, Xl
FHIHT DAL SR A i B 3, L RA S B LAk
Hbrak Joikit— LTt

FEZA ASRIE BT 55 L5255 3R M, ProTeGi
B 8% 76 JR 4R P2 JE a1 3R THME B e i 3k 31% . [RIR,
ProTeGi & KU/ 1 % APL i FH 4K #5 , #2155 T 200K .
BRI, ProTeGi #2448t T — Fili = 2k HL BT Y APE fiff- ok
T 5o 3 SRR R R 1) SEARL, AR FH SCAR A i
114, ProTeGi BEWES 78 077 & 24 N 2Rl N T 10
AT, 4R i S R TR AR T 4 P R, H
WD B B3N IR F AR 5 ORI PR A TR
FEMAL” NG SRR AL T TR K o Z TR
TANT A, BT TR 55 AT RCR A, L H
FERE AR ST IR BRI soh R B E R8T .

SRIM, ProTeGi 72X A B U5 7 947 JRy BR P
WAESN W ., B 7853 FIH LLM H 578 1T 3052
FHERE L BE ST o PRI, R I = 141 BA AR HE 1Y) Re-
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Prompt (prompt via reflection with LLM) J5 % 1] DA & 1E
JEXS ProTeGi J7 sNHIY & , B AEdE— L5 T LLMEH £
HERAE S R, HRERE T 5 LLM AR 22 B DT o2
PoAbdE s 484 RS FH T 575 28 e B AT 55, Ak
AT HLRI AN R B 25

RePrompt >k FHIE LA T =0, B L aifb i, il
ELAE AR A . ARSI T AR AR AR L
TIVNPER: (DWIP L EA N . LLMAARIERI 4
WA, - 5N i 5, B IR Iy B L (2) B
SR A E I R SAS TS R Y
ORI R B i, (9 AN A TR P B PR 2 o (3) 2
A, BB B A A (S O —A> LLM Ak X Hip
PEOR T A DRE PR IR, Ay A m R, (4) AR
itk 2R AR ki BB DI Bk,
FRTHME S5 R M, (5) 4 AE S . b e )s
HIHER , FAERT 55 TP A TIOR8k

45 LR W, RePrompt AENS i 5 42 F+ LLM 7E &2 4=4F
55 P HERERE ), JUHAERRA TR AN g R A B AT 55
KR 5155 EAH L, RePrompt $2 51 745519
SERUE , (AR R A =

BRI, RePrompt {F 4 3 T 22 5.5 2 1% H sh 4k
SR s, R 1 AR T LLM 4R RE T A 2>
N T A5 W E R 7. AT MO T4k T
AT EAE ERSRM BT P e LLM T HAE K
FIAR REALSIZE— DA T RE , U 24> S 1
JHHETS R
3.2.3 LLMAERILSS

WK BARE SRR — R, T HARTE S
FeAWIVE AR T 2 R & T H, i85 s iy & H
B 5 B RIAESAT T AT 55 B A 2R B (BB TR X 47 i)
M N ) , [ SEHLAS 2 > T B S BRI T 1, 221 ] )
PR G, A KA 53 sR R, T B Sk £ i
ZNTA] o T R ES BRI T, KR SR W B AN

AL E HARAT: 55 h B R PR PPAL

Zhou 55 NPT (5 LLM AE B A Ab &% , Ik
R F B HA NSRS SR TR, T 5 A
B4R TR (APE) il LA X 43, A SCR X iAok i 44 4
APEer (automatic prompt engineer) . XS 7 A
B — M SRS S — M SRR R IR b s

WG4 A BRI F BT B s e i e 4 4R
Gy LARER R 48 2825 ] (), ELACD BRALES - 1E n]
B A B, 20 i A s )7 ELEEAR 2R LLM D
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FIRERHE 2 5 A B, i B A S e i 1 il &
AT A: il 4, S AR e A 1 R T 5 e il A AR
P ELRAE 55 BT HR R B , 48 5 LLM 2E A ST 55 %2
SKIHEA,

A R e e 48 A IS 38 3 DT 43 eR B0 2 e A 4
A Rt — AT 4 1 BT, APEer R IR SRR
PR HAT 25N ATAG e A AR T 53 R A
VAR A% s 2 BB 48 4 BE TAR o m i 48 2, AR Al
ALY BT TE 2, FEAT R R IR R s AL, Fr 8k, B
FIRF T E A B bR, APEer AW ] T2 AEA F
2] B LR A B A USRI RHERY bR SCE ) B
AN ST D REA AR ] B PERE

SMATNF , APEer J7r kBt T — S 2 HAH 19 i
TRITZE Tl DR R H R A b TN T
T F T TRV Z R S iR, X — 7k
PR R R AT T, S TR SRR Bt
M JRRR , R I Sebt e st 1o A B A 1) o SRR
FEARWERICE AR 0 %, ©Ch H st TREGUAR
ZJE L TAR M HERARL,

TEUE TAERERE I, 257K DeepMind A A4 H —Fh 5k
#1775 2 OPRO (optimization by prompting) , HAZ% 0y AH 1
SEIE AT I LLM A SR R UL 2 ™Y, 5 Tl 1 s il
AL EAR , A O AR, BRI, X —T
G EGE R T LA T AL CAndh BT B 5
A2 20 A5 A AR TR] 2 B A g SE By =, B
FRTESCAR S ] N 58 U™, o R RE A2 B AUREL
AL B3R 1], IR T X E5 2 Il R A Ak T v, )
PUESR AEIIEN i Ea] e

OPRO HE 42 11 #% 0o 43 A 45 LA R JLAS B FR Y
(D) oHernintg . 456608 Py s B0 sk il oy
21953 X FIAT: 55 iR (L 45 HEAMF B R B S e H
b)), N e SRS AL A 4R = . (2) DLk ds LLM., H2L
JCEERTEVE A ST SRR AR 4 B LA
J7 ), A Sk R s o i 2 UGE I, B AL R T
Peom i DRSS A o Q) PPl Hidsk . FApm
BR3P LLM PEAG AR S5 P T L F T 41, IF
FEPAGZE S R s 2h o il B A Ak #  fif
FEPERICTEHE— D4R T s 2 P SR AR B 28 1,
LR Aot AR o TR b, B ML E TR
HRIE T Z AT MDA 25 AR OB 7, XA LLM g8
38 5 AN 3% AR FHAE 55 RS B2 . OPRO i e 8L i
LLM 7E4 R LAl b i 2 Ui, e 2 78 A AR 5 A
PRAES5 H H

SRS Sl U R NI v AMIN DI AN CI R | E A
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FEHLE, OPRO SEHL 1 =y R MW 4 7 it , 48 141 551
e, I HA )z il M AT R B 2 R A AR 55
JFH. 38 5 7 B B2 UL AL RB 8 DR AR Bl 5 T et A A
2 A I RE VU C SOR AR S0 T A TR R R, 4R
1M, )& 4 OPRO 7E 2 FMT 55 h R B € T3 FFE— 2L )
PR, i, LLM #F AL B HUSE [ BUR , i T B SCH
TR R ], XE DL 303 o e 5 ol 2 2= AR A UL
BEAR X F 52 2% H bR R &, LLM 1] BE TGk HER 5 | 1k
AR AR BRI S TR R PERE A, BRI T H A 3
EARARIIRE ST . B, /R4 OPRO JB/R T LLMAE M fb
AT ) ABAE TR S A 2 DA 5 T FEAE PR R

b TR A O AR A — > LLMAE N
P78 TR T AR AR 2 2 5 1] LLXE X A~ /s TR Uil
LLM 1 r e e We? 7EiX FiAR 458 5 T , PE2 (prompt
engineering a prompt engineer) Jy BB HE H . EHAZ O 8
RERE 0 ] T4 R AR A LLM (BRI 2% LLM) #E7 7
P TR, DRIl A b 38 s i A= g #2, iX—
TR OCREAE T, 8 A O BT AR AL AL 2% LLM 1Y
JCHE/R 1], T RE A% 51 47 M A T PR s A U 55 P4k
AT A SR A AR B RSOR

PE2 IA%.OAE T i AL AR 2% LLM B T2 755 1]
K TLIEACRAL , BRI T7 ] - SR HE R A4 2
LR SUE B, UGG F IR . o T35
XA BAr, PE2 1 1 28, 15, et an

B4 M BT SO iR R TR P AAT 55 48

A AR A LR SCHIAS UA . b B DA
BB R 20T 55 48 2 8 SE 30 e A 2, e s Bk
fir LLM BE4f s B A AL B 7n o HU PE2 B ST
w LA A S e, indit b BRI R AR DT
o X — RN RS PE2 REfE AR S s L kit
T T ST R A5 P AR R e AR O AR RS, DT 2 T
LLM 7E4&FE 55 A R

(B R, M HADTE FRARE AL A58
T B FE R T P8R, Cinnamon AL$Z H T —FlET Y
H s3I 7R 1 # /7 1 (automatic prompt selection, APS)F",
BRI R IR SR TSRS R B . APS Jl i 45 5 5
P A AL, GBS A Sk mRIE & 3R e
T B2 AR E A SRR TP AR R T R A
KM, I PR FFI TR RCR A 2R

APS S R = A EELER : (D) 48R B0l A=
o 5, B “K-means” AL XU R ds ik 17 R
25 K AR TR RN bR SO S —4, DAL AR R R o
i 1 “Sentence-Transformer” X [l A1 R SCHEA T4 A5,
A U R O 25 R OB I — AR D 25 B 1
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IRBURE o () 3R TG B2 o I — R SR A
PERIAI S . WAL RO TCRARE S | i PR ]
B A FH O 458 2K pREICR AL AL PPA 25, DA TG e 25 1EU31)
B R Q) FRHES o XTI A JER g
SRR R AR DGR 43 R IR I B 4R o 1%
D7 3l SRR R ST HEY L 3 AT kA RN L
HE— 25 Pt SR A M T AR (e

ST APS 3 i £ 7 A B PPAS FHE 2 LT Y
RIS G, T T PR BRI RCR AR . AR
R R RN, BEAR T TR B AAER |, B R i iE
NPE BT 28 A ARE T BT SS . 51 AYIZREFI$E
NP , APS I 2R H S L SR AU T T 4R
(A RE S, I8 BETE 22 R 5 R i 22 1) 5 R B 4 ) °F-
. SEEREE RIS UE T IR B REA A 55 i
AR, BB T T2 N T

L5 TR AR A T AT, R 4R T EA
FEZ A MNEE 4 b ST B 5, e R b e 103
ZITIETEARAT 55 b A AT BE ki, 3 sS85
B s () 2 R R R R % Y . APEer JFAIE
ol LLMAE A e ds , A shit Bt $E /R 1 ; OPRO
PE—AEHGE T ki B , it LLM [ 5 g O,
SRR e Ry S s A0 Ak s PE2 I FE A6 2% LLM J2 1fi 3
T Ak, 38 2o Btk e s 1) 45 T 4% PR 7R A RO
APSE 5] AREFIEAGHLE] , F it T —Fh sk L5
A AR PR SR T 75

A4 LLM OB{RAL e BLT ARE JynLe
Table 4 Ability comparison of LLM as optimizer

ML %

SEM — LElRETyey
GSM8K  MultiArith  AQUA
A A kA
APE 76.02 98.33 61.81 .
° Pl
HR Ak Dy s 1R S
OPRO 80.20 95.30 5430 e T
i B
PE2 64.00 92.30 67.70 At E AL B
APS 81.49 100.00 64.57  IREIFHIK

3.2.4 INE;

BT LA Y A SR TR i Ae 40 Bh 4R
WA EITUINGR, AR R S50, I A i e A B R
T PR X o RV s | NS U Y3 i Bu i e B
HARIE T AR, vT L A FR L 7R 3], R R X
ARFEBES TR HAh R LR RE AE 2 4 5 T
BAARACEE R0 FE AT S5 PERE , [T A2 g 25 58 2 A
FENTHRAR ) A SRR, LT AR R

SR, A Sk Ee s TR Ak o AR T s — 2 A Bk

https://www.cnki.net

%o HARH TR R B N 1A R 1 o i, AR R E A =
B o T AN B 55 O A, PRI TT g 2352 2 BRI
BEAh , DAk i 2 A 2 vk AUAS A S8 PR B T i S 206 42
B A R R T . BARE TR R P2
> R TR T BT g R BT AR TR R T
GEUR R R AR R 2 o) SRR R P W R
AR RVEVR X BRI T R Bz

3.3 JETUHESEIEY APE

T AL APE £ 24 SR RES 7R Rt 72
S RV o< Y {UF e NS I S s S N0 2 42 SN B e Y PR
FERLEA AR R IR, FLREIE W AN AT 55 (R 7R, B T
RIYERRE U R B . S E—25 3k Uk, LLM A B n {if
FAC A A B3 a AT 3 B g7 U Al
T LS APE,

3.3 JETSUER FIER S ISR R ]

4 # ) DeepMind AT BA$E H T —Fp H T LLM A 3%
Z: IR H FR IR (487 7 7 8 7R 1) 31 A Prompt-Breeder™,
PUFfaiFx R PBo Hoilad 5 s — 4 WA AT 55 $ ] |
TR i R ) FSURT 28 28 B 7% 1) ) [ RS 5 , ) B LM 247
A SR A R R AT 55 B R TRl R S8 AR B R Tl i AR 1
FEi i AR BE PR Hh 3 N AR U AT S5 4 L /D7
%5 th PB A= iU R R 1 i — A 9l . PB AR T HFp
AN ) 27 ) 78 S B AR A SR 78 S AT S5 4R 1] RN 2 A8 4R
il PRI RB 8328 A8 T R o S0, (] o) 722 s d ok
A &S B R, AR A 8. R —ICH
FRFEI AL AR 5 5 PR A T B, T i Ak Hh B
PER$ER, PB AN BE BT 55 $ 7 0] , 34 fig el itk
FORACAT 55 1 2 A8 R3], HxX i il it LLM S2ER,
PR LS 2 LLM ) A 32 iy A el Of B AE
XA ST R PR TE L ) AT LM AT S5

K7 PBEpcdd n il n il
Fig.7 Example of prompts made by PB

HARSEE A LR EEAR . (DPIRE. PBA
— YRR EETF 4G , SRR AR AT 5 S R TRl 28 A8
PORTAAE N (2) 2 F400E . PB i FHZ Fh AR AR EFT R
PRV RIE 25 0], X BSR40 R LA A 4%
B S ARG AR S P AR S LR
SR L PR . (3) bR SR L L . PBIBST
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—PRER TR PR R EAE LY . TR MHESE
ABRRE AL O A, BB T A B, 4%
T P A AR T AR S O AR R AR S
N BE AR AA o ()38 B AL o S TIPS S5 4R
PR N BE , PB 23 E I ZRAR 1) — A BEALAE IR b PEAG HAE
fig. (5) 20k, PBIEZNTEE ki, AWk
AT S5 R A S SRS s . AR Sk n) it
BES1 , ANWREAR LIS R L i 45

5 R PB TE AL AE SR HES B R DL SR
TGN T R ERERRE T, WoR T
HAE A s R Bt A R GH I E RS 1. R
Ml , PB A S 0 M 2R S AR 3R 2 BRI, x4
T RGERY R 22 FIRAMERE . S48 PBAE H IR
T JR L 1 3R R I RE S (EATI SR 32 B T [T 2 i 4 #i b
), W AR S8 A S T A AR R . AR ST AT ik
—ARER PB A B 24T 55 rh N S AR Ak 25 ]
3.3.2  SE PRSI 0 3 e o il Y D4R

TR SRR B AR AL 24 s 1T —Fh B 3
Ak 42 7 1R A AL HE 22 EvoPrompt™!, Ho A 22 Ab 7 K
LLM 1E A #4054 iopt i 3 7m i), I3l ok 601k
ERECIR RS o) VN i PO 5 01 i A 6 < R 0 L VA 1
PRic A B i , 240 T FRic Z [ EE R , T Fhipt 5
X B s i) B B T S 2 G E #E . Evo-
Promptill i 254 LLM £F 3 2815 5 A B 8 Ll AR A
AR LA RE T, L Tk — Pk ik .

TEFL Ay BE £ I, EvoPrompt fifi FH T i3t /4 55
% (genetic algorithm, GA ) F1 22 43 ¢ £k 5.7 (differential
evolution, DE) Wiz W FH I B o it kBl A:
YA B AR RE A (R AR S A AL
NBEHLA B A AR e s A AL, e 2 i
3N = B = Ry s B S s L N W R e e
i 5L 22 B R A 23 ), I RO T4 2 501 o
DE il i 48 5 A8 U AR , I FHAS AR ] Y 22 5 A B
B, JTOR BR 3 N BE B MR GA PR A 3 4K
PEFERYBE 17 Z2 R0k )& v R SO, T DE W75 %
grzs (A ) 2 SR AR A I R rp R B 0, 255 sk AR G
AL H EvoPrompt 7F &5 Hit4 /s 1 1k Hh BE 8 S B i
I PERE R PR S, BARSE I R QT (D) 146
FEAR . EvoPrompt 45 & A3 1 9 4 7 1) Fl Bl AL AR 1
1) AL BE S TRV , b 0 Jmy B e O, B8 AH 00 R BF A4 T
i, [AlI LLM A2 sy daldn gl m A H v (2) At
. EvoPrompt #I| ] LLM /E R k351, 45 G4 iy 2%
S G L (N Y ST (77 N C BB i BU Bz el = AP T 7=
SR T (3) U, iR R TE I AR I
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Al D75 B R B, SEIAL A SR A Bl & AR AT

45 LB, EvoPrompt 75 H 2R 1 5 AL T 55 /R
TEXMWE . RS FZHESEXT R Alpaca-7B F
PR B GPT-3.5 BERIEAT T #onial i fb, F A %L 13RI
AR R RN LE B s T B E RS AR
54 WAL 55, EvoPrompt [H) Ff Z8 BE 2 HY |, 45 51 & 78 X
TS RSO T AT T, S HUS T
3.3.3 KL T RAE SR SO G

K H UNC g A BB T —Fh B8 S Ak
D7 5T g 1Y JC R 48 4 18 R (gradient-free, edit-
based instruction search for prompting, GrIPS) . % J7 i
KH T AR 0 AR LU TS A g AT 2 A0
RIE F R 4R BARTTF , GrIPS ML fb i 72
LG LU JUAS SR B 5, MG 4as s &, dl i —
FIN G BAE AN e IR | J 408035 55 ) AR i 2k
WEPUR o BRSNS S A 2T SRR F R
AU AT PAR , PEAS AR R B R e T 55 1
I, NERR B BT . SRS R TTAL 25 2R, e
ARLE R AF MR AT T — e g Ao fb . B4~ id
PRI T A SR, 8 5t A0 i b 220 o e R4
TN K — VA T X A5 SR il sl B 45

5 RW], GrIPS I ik REMETE AN e LM FE AR B G
LT 38— RN iR FE RO PR, P
T LLM MRS MERE . 1 AU S T3 b sk
RN R B R KEEAC T TR SR AE, R T ik
A A SR TR i B R I Fi s (i
XA 7 2 APE St 17 0 SR, R OR AT RE LA
PR AR ) FEEWF R Dy 1) Z— , U R T B
B ARBAPEA TR 9 S BRI o B 2

A APE F 98 0 A 41 02 28 B SUA SR i $ R
i), A SR TR E 7 a2 Al — s L
TRy TE %o KA R B Y L SO
Kok, HAB A 23 [ AR5 e K, R I A 19 APE S2 817 =X
FE T 7R A B B AR KA PR AR . T AT 265 2o
TR ST 5530 T B R R | I SRR AR
AT AECTMAT , I H X Se AU AR PR 75
b YN RN

R —[RAE, S 1 A RIS AT A B — o T )
K ial it A s k4R T2 (long prompt, Long PRO)
HHbREA B EE SR AR P2 ARARL, [R]s SE
REFRTH AR IR [Ny, V25 sk 5 | A TGV R R A
e, PARIE 7R A () n] f et . E BRI |, S0k
Hoh T =AP8R: (D) @ R 2s Al 38 PR %
23 [AVRI 3 2 m 0] R LLM TE P41 X
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AR BT S ) b G IR AR R ARUR
() EBMRETE . R, BRI —14
) R AR o AR R 4R top-k 7 b , 3k fR
JRFREAG | T 48 10t A% B30 3 aa A8 S AR A8 A IR it
PEFURSIGERE . (3) Iy L5 | SR . d it I s 7228 S s
SISA AR ST R . R Lin-UCB 3444k )
TR, [R5 AREALIE ORI 2

L4 GrIPS I LongPRO e i [a) 84 T A , {5 &
IR Z A — s e R e kA U A N AR S ik
o GrIPS i gL F kX R AT LA i /e
il 719 Gt 0 28 TR 4 T R, 17T LongPRO NILKE 33X — i fk
JEARY i B PR 1) () R, SR B A S S kA A vk
AR AR (118 Lo REVEFIAT 55 R0, PSRy
FAJEHRT , GrIPS il LongPRO B A H #M: : GrIPS B3 1]
TN ELR B R 3 s 0 AL, T LongPRO JU i fife e 1 5S¢
ABETROA A B MEREL, FE R AE Ll ST 55, 7 2
AP I R SR BRI
334 &

VB R A 3R 0 1 31 Ko 5 R AL s TR
A1, PB EvoPrompt ., GrIPS £l LongPRO #f &/~ T
K71, PBAIA H IS LT Z AR S48/ E S0t
THIME AR IR AT B BEAE 7 T IS N Bk AR
PERIAT 55, JUHRTE T 2 5 B B3 A 2 R 0 8 3%
SR HAC . ML Z T, EvoPrompt 25 & 22 8L AY
B R R s B M 22 o Ak BRI T —
ol s HORS B R DAk 7 0 TR T R 2 0H U 55«
GrIPS J7 ¥ W3 52 ok B2 i R 01k 7 =X, 5 I A0SR
PR AR SRR AL UR 38 ) s A2 A R 7 2 i
PR TS E SN TR, B EAES
1 RAIGYE , REBE R IR AT 55 77 K AR PR3 JF HL
TR RIS R R () = S AR . Long-
PRO &7 TR AR IAW H sl i@l o e ) 72248
AP, DR TR s 1] ) e RS 2 2 ] [A)

XTHER G, PB BEIE A AL BT 55 2 A A R B )
VLAY 5¢ , 1 EvoPrompt F1 GrIPS W 7E A5 i A i 72
ASCSICE: 5 T R A B A AR i, JU R GrIPS 7R 164K
NG IEIHAE 7 T AL T HA R L. LongPRO i
HTHREEE S RS R Ak

PN T APE, 5t R1E T LA TT
Wb R B Re J1 , sl T AL Gk 7 i i JR B
P XA ITEABE AR N T A E T Rr2k
PoAbdE s in] , 38 GEIE WA [T 55 (A5 2K, P2 FHRE R TR R
FEGIR R, B LLM BOR P & e | b3k
TSR A H A 0 PR R, AR A S — 2D HE )
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BN A S AL B AL | o KB A ARIE S
QPR GEAN W] SR — 5B 53
3.4 JEFRERT RS APE

RGN R GRS T 2R R IR S,
W LN LR F B 2y vl A Bk APE. MU
AR BT, HATRAT A B A 142 1, J& T APE 93
SR AR o X POy U LA AT TR S 2Ll
JHITETE PSR, I H— i a] DId BeAS A28 50 1 5 AR
LLM, 7 181 X5 AN [ 28 550 g 4 7 i) s, U B 4 R o 2 )
PRI YRR AR RV AT (] o AT E A RN L
T RIE R R 4209 APE,
340 JETIREFAL 3R 2k

K B IE R AR A WEIE Z 13— o
A B R A 7 s, TR SO0 AR B 4 7 A iR 7S 1)
(black-box prompt optimization, BPO) , 5 7£i8# i — kIl
SSRGS, 5AEGNER TR AL Tk (n
APE ,APO ,OPRO % ) if; ZAE Y Zh4E L AT AL TESR
UEAE b B AR 5 PR THESUR[R] , BPO %02
YIG— P HN BT HIRRL 2 BRI AR S B ARG R
AR AR B3R T R RV A, o5 2 — 21 %k

FEEARR SR L 3 AL (D NS b4
fi o T IR EAE4E , 4 OASSTI1 Ml Chatbot Arena 4%,
X R A B A5 R4 38 A (P, SR e 1, A 48 1Y)
Ml ) o (2) A AR AL IS P4 7R o A LLM A= sk )5
M7 A DR, 158, LLM X b3k
FE 04 e [ RN 248 e 17, PR LD ] 5 v, BT
SERAT AP B G 5 PR . () IINZRF 51 27
GR35 SCH 8 1lama2-7b-chat FEA 10, LAS 2]
— MRS R 2

BPO ML AZE AR TG B S SCCs  i HL
JEXT I AR PR A R SR TR, LT AR L Al PR
) TR R 2, XFPRAA T R Z BT A3, R
HANAHAREE T N B Im a8, HBE S A, e
fifi LLM i [a] T B0 8., SRR T EAR ER
MTEAF A AR AT ok, BPOSRIE 1% 5 S,
A S 5 , Do A AR BEe B AT LAAE B
HAFA NI R me N, s i 1 AR AR A e
342 ASMEdiRbg R 5

oK F AL R 2R E ) ALRBESE A AR T —Fp R
1 V=N A g ik = 1 98 R 4 (plug-and-play prompt
augmentation system, PAS)™, PAS HA7 gk | i A
YL G R G FeE X AR L RR IS AR 5 FI R 48
AT IZ M FHAIGHE . 2R FENPATE T, Bl
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fig To s M AR A LLM B RE 1, JCF7 64T KRR T
llE

PAS SEHT L A% OS2, SE T 2 2 Bds E 7 e
R ) RS P R R AR Sy — b R L, 7
fifi FH H AR LLM B 5808 i A e = 19 7 =,
SCEE A SR IR . AR T LRSS A R
IERS 55 0, BRI TE EAREIE 45 1 BRUAS = 15 40 1 S Ak
S AL THI B4 R . ELR B S A v
(1) B 5%+, M LMSYS-1M F1 WildChat 542
A Bk B T 9 B s Bl £ SimCSE ALY L 8,
IF3E i HNSW R FEIL AT 404, I B Z Rk S
Jatk . RS R PR RGEE HEA T Of E FN 5 28 B4R
3259 000 4~ i m 4 s in) o, (2) A sl b 78 $7s Bodis A=
o W T REAR S 2T 1 A S kB A= iU 8, R
K1 1) golden FHE X BRI th (LR #1727 2] A
AR AN TR R o S A9 5 299 000 4 $ 7 1l - b 7 42
NI NE o ) B E R S5 14 o AR IR B A “ R
1M TR N 1) R B BR AT S AR ER N 2 DR L
kA L —BBal T . R R AR, EEEE
ERRCBH, 5 2O AL B 141201 299 000 4 g i i “ 2
iR AR R R RO o (4) 42 U PAS R4t [
FHBCE A IO V6 52 B LLM, 4 LB 48 [ 3hkb 78 3278 1)
IRET

X FR S B AR TS B H AR LLM A9 S 8k
B, PR T ASE IR A S v sy /A 3 APT
ARG (U GPT R4, 3 5 IR R SC Ly 2078
— BB RAAY bW TR R4 2, e s AR
AHXTRE ST B . Horh Arena-Hard M4 S KRS 40
21 Lmsys Org JFIi i 5t 2 KB PEAE B ; Alpaca-Eval2.0
IRAETE A Tl S P SR R A E T O 55 R (9 S
P ZEA KL, PASTE 3 LIRS T BPO,

4:5 BPO FIPASfiEJixtLE
Table 5 Ability comparison of BPO and PAS #141/ : %

Arena-Hard Mli4E I Alpaca-Eval2.0 JIli4E I~

R FHiERhR TR
BPO PAS BPO PAS
GPT-4-turbo 76.60 73.54 54.65 62.58
GPT-3.5-turbo 15.90 18.02 10.25 33.11
Qwen2-72B 44.40 4791 31.25 40.59
LLaMA-3-70B 4520 46.30 38.92 43.17
RREIE Yy 45.53 46.44 33.77 44.86

3.43 /&
Sk, BV B 2 58 BPO I PAS 3 i 18 i
AR PR T —FP T LLM MERE I HLE o 3 Fh T iR
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AMUBA R e 1T HAR AR, BEAS S A RO A T
SEGEUR, s b ot U 5 BB A 2 AL R P AR
FoLnih T PRI AYRFAERS HE

#:6 BPO FIPASHFAEX LL
Table 6 Characteristic comparison of BPO and PAS

Jrgk AREAT B UIZRE X yTeTyr

BPO  FHEAl  MAamf& 14000 ADRAEFEL

PAS  TINIAL  EE& 9000 EEEK%EA
2555

SR, BSRAE M A B R FH R B8, (B AT 240
() /& BPO il PAS 35 4% it I J2 d5f 2% - 1) Uil 4 5091
£, PR AR UF LB 4R 11 v o i R R PE G 2E I
A, 0T DL 303 A R R 24 2 AR AL R e 1AL
e 7 B S B ok by 1k A B .

4 PRikY R

R4 APE i LLM ML Ab g2 i T A2 T 5 A 1
SR E A e 43 Ui 1 i A0k A R g, (H HA
TGRS, H AT 2 8 A LA (R
Bl = XA 55 IR 2 LA RS [ 7 A AR | 1 SCERABRN
JE B2 NSRRI IE A o Ry v AR S [n) 1, 5 A
A SR A O R R S A I BE RIS AL Y
FoAR  RIB e 5 AR Rm 4G, sl A shds T
FEIE—2 R ) 2 R, RIS 5= B
—ZK APE, #H DUF kAR

(DA RS SRR . G B4 z
LB A LR R B A A i B B R B S AT 55 o
i N VS T, AR SR BRIS A AR W BIET , (H e A 3
PR TR RS SO0 TP BB, FifiE I
AT A0 TR LR R B A T 4 SRR AL B AR ARSI IR A
R X SEH AN 2 PR T PR AR U AR S 3
P, Ry il e ST AT 55 B AR B o FH e i 2

G A LA SNl LML F>]
FIRTER B S & T AN, iDL Bt fefe 4
REFETR G, TR AR R ACR SRR e v L
IR, Kok TR 2 ) S AL Ge S () il 5 g i —
A AR TR Bl s 4558 ks >
PeAb R RIE R 2], vl DL S5 3 = R AT 55 e T iR
VA4 o950 18 N i [ O L5 vk WA W P 3 o TR B = RE
S5 SRR TN B N FERLE] , SRR TR A
W

Q) ETF AL IR R . IR S A
KRR ITEE N A SR TR T KRR R 2 ],
ok T 28 U A AT R . AR IS
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RTX LT AR THERE A N, s R AT H
Xof S A G R YRR A PR Tk, i e i 22 AR TT
PR RS2 2 45 T AR , JETTHR 8 3R T AR
NN EUR N

(4) R BRI FHEAR 38 R AL Sl AR st . BRI ED
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