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 Dear Editor,

This  letter  addresses  long  duration  coverage  problem  of  multiple
robotic surface vehicles (RSVs) subject to battery energy constraints,
in  addition  to  uncertainties  and  disturbances.  An  anti-disturbance
energy-aware  control  method  is  proposed  for  performing  coverage
task of RSVs. Firstly, a centroidal Voronoi tessellation (CVT) is used
to  optimize  the  partition  of  the  given  coverage  area.  The  optimal
position for each vehicle corresponds to the centroid of the Voronoi
cell. Secondly, by consisting two battery energy control barrier func-
tions,  an  energy-aware  kinematic  guidance  law is  designed  to  drive
each RSV to the optimal position. Finally, an anti-disturbance fixed-
time kinetic control law is designed for each RSV to track the desired
speed based on the fixed-time extended state observer and nonlinear
tracking differentiator.  By the  control  method,  RSVs are  capable  of
achieving the long duration coverage within the given coverage area.
Simulation  results  verify  the  effectiveness  of  the  proposed  anti-dis-
turbance energy-aware control method for multi-RSV.

There is a surge of interest in motion control of RSVs because they
are  vital  tools  in  exploring  the  oceans [1]–[3].  Cooperative  control
enables RSVs to perform more challenging task over a single RSV in
terms of enhanced efficiency and effectiveness [4], [5]. In particular,
coverage  control  is  a  typical  cooperative  control  of  RSVs.  Such
motion control scenario can find numerous missions in practice such
as  maritime  patrol  and  environment  monitoring [1], [6]–[9].  Cover-
age control is proposed for unmanned ground vehicles [6], unmanned
aerial  vehicles [7],  and  robotic  surface  vehicles [8].  However,  the
aforementioned works [6]–[9] do not explicitly guarantee the persis-
tent coverage performance. In practice, the vehicles may not execute
task persistently because of the battery energy constraints.

Motivated by the above observations, this letter aims to design an
anti-disturbance  energy-aware  control  method  for  RSVs  to  execute
long duration coverage task. The main contributions of this letter can
be  summarized  as:  1)  In  contrast  to  the  works  in [4], [5] where  the
objectives are to maintain formation, the proposed control method for

.

multi-RSV to achieve coverage task within a given coverage area. 2)
In contrast  to the existing works [6]–[9] where the persistent  cover-
age performance may not be guaranteed definitely, an energy-aware
control method based on two battery energy control barrier functions
(BE-CBFs) are designed to achieve long duration coverage mission.
3)  In  contrast  to  the  existing  coverage  control  methods  in [8], [9]
where  the  convergence  time  of  estimation  errors  can  not  be  calcu-
lated  in  a  prescribed  time,  a  fixed  time  extended  state  observer
(FTESO) is  proposed such that  the estimation errors  are  convergent
to zero within a fixed time

Problem formulation: Consider the dynamics of RSVs as
 ■||||||||||||■||||||||||||■

ẋi = ui cos(ψbi)−υi sin(ψbi)
ẏi = ui sin(ψbi)+υi cos(ψbi)
ψ̇bi = ri

muiu̇i = fui(ui,υi,ri)+τui +τwui

mυiυ̇i = fυi(ui,υi,ri)+τwυi
mriṙi = fri(ui,υi,ri)+τri +τwri

(1)

xi yi ψbi
ui vi ri

mui mυi mri
fui(·) fυi(·) fri(·)

τui τri
τwui τwυi τwri

Ui =
√

u2
i +υ

2
i

where , , and  are the position and orientation in an earth-fixed
inertial frame; , , and  are the velocities in the surge, sway, and
yaw directions respectively in a body-fixed frame; , ,  and 
are the mass of RSVs; , , and  represent unknown non-
linear functions;  and  denote the surge force and yaw moment;

, ,  and  denote  the  time-varying  environmental  distur-
bances. Denote  as the total speed of the ith RSV, and
the dynamics (1) of the RSV can be rewritten as
 ■||||||||■||||||||■

ẋi = Ui cos(ψi), ẏi = Ui sin(ψi), ψ̇i = ri + β̇i

muiU̇i = cos(βi)( fui +τwui)−2sin2(
βi

2
)τui

+ sin(βi)( fυi +τwυi)mui/mυi +τui

mriṙi = fri +τri +τwri

(2)

ψi = ψbi +βi βi = atan2(υi,ui)where  is the course angle with .

Ėi = −δKch + (1−δ)Ken Ei
Kch > 0 Ken > 0

δ ∈ [0,1]

The  charging  and  discharging  model  of  the  battery  is  stated  as
,  where  is  the  battery  energy  level  of  the

ith RSV; /  represents the case of the worst/fastest bat-
tery  discharging/charging;  is  the  switching  coefficient  of
battery charging and discharging.

G ∈ R2

ϕ(g) : g ∈ R+
g ∈G

H(P) =
∑N

i=1

∫
Vi
∥pi −g∥2ϕ(g)dg pi = [xi,yi]T

P = [p1, · · · , pN ] ∥pi −g∥

Vi = {g ∈G |∥g− pi∥ ≤∥g− p j∥ ,∀i ≠ j}
pci

Design and analysis: Step 1: The first step is optimizing the parti-
tion of the given coverage area. CVT is a powerful tool for the area
partition.  The  centroid  of  each  Voronoi  cell  can  be  defined  as  the
optimal  position  for  each  RSV  to  track.  Consider  that N RSVs  are
randomly distributed in a closed and connected area  that has
to  be  covered.  Associate  a  density  function  with  each
point .  Define  locational  cost  function  of  the  multi-RSV  as

,  where  is  the  position
of ith RSV;  is position set of RSVs;  denotes
the Euclidean distance metric. Next, the Voronoi cell of the ith RSV
can be defined as . Then, it fol-
lows  from [8] that  the  optimal  position  corresponds  to  the  cen-
troid of the Voronoi cell in a CVT is:
 

pci =
∫

Vi
gϕ(g)dg/MVi (3)

MVi Vi MVi =
∫

Vi
ϕ(g)dgwhere  is the mass of the  with .
epi = pi − pci

epi ėpi = qi − ṗci

Step  2:  Define  the  target  tracking  error  as .  Take  the
derivative  of  along  (2),  and  one  has ,  where
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qi = [qxi,qyi]T = Ui[cos(ψbi),sin(ψbi)]
T epi

qci = −Kqiepi/
√
∥epi∥2 +∆2

qi+

ṗci Kqi ∈ R2 ∆qi
eqi = qi −qci

epi

.  To  stabilize ,  an  optimal
total speed guidance law is designed as 

, where  is the guidance law parameter vector and  is a
positive  constant.  Define  the  velocity  tracking  error  as 
and the time derivative of the  can be rewritten
 

ėpi = −Kqiepi/
√
∥epi∥2 +∆2

qi + eqi. (4)

pbi Echarge = {εi(pi) ∈ R2|∥pi−
pbi∥ ≤ dch} εi(pi)

dch

Ei −Emin > εi(pi) Emax −Ei > 0
Emin

Emax

hen hcn
hen(zi) = Ei −Emin −εi(pi) hch(zi) = Emaxδ(si0)−Ei

zi = [pT
i ,Ei]T si0 = ∥pi − pi0∥ δ(si0)

si0 > dch δ(si0) = 1 δ(si0) = 0 Czi
Czi = {zi |hen(zi) ≥ 0,hch(zi) ≥ 0 }

To implement the long duration coverage control task, the position
of  charging  station  should  satisfy 

,  where  is the minimum energy required for the ith
RSV  to  return  to  the  charging  station  and  is  the  radius  of  the
charging  station.  In  order  to  maintain  a  desired  energy  reserve,  the
following  inequalities  and  hold,
where  denotes  the  minimum  capacity  of  battery  storage  and

 is the maximum capacity of battery storage. It means that each
RSV can return to the charging station before limited battery energy
depletion  and  leave  the  charging  station  before  overcharging.
According to the definition of the CBF, the functions  and  are
defined  as  and ,
where , ,  and  is  a  step function.  If

, ; otherwise, . The safe set  in this let-
ter is defined as .

hen hcn
h(zi) h(zi) =min{hen(zi),hch(zi)}

q∗ci = [q∗xi,q
∗
yi]

T

It  follows  from  the  safe  set  that  the  functions  and  can  be
described by an equivalent  as . Thus,
the  speed  guidance  law  can  be  obtained  by  the  fol-
lowing quadratic programming problem:
 

arg min
q∗ci∈R2

Ji(q∗ci) = ∥qi −q∗ci∥
2

s.t. ḣ(zi) ≥ −αh(zi) (5)

ḣ(zi) = ( ∂h∂pi
)T q∗ci −δKch + (1−δ)Ken

Uci = q∗xi cos(ψi)+q∗yi sin(ψi)
where .  The  optimal  total  speed
of the ith RSV is derived as .

ψci = atan2(q∗yi,q
∗
xi) eψi = ψi −ψci

eψi ėψi = ri + β̇i − ψ̇ci eψi

Step  3:  Define  and ,  and  the
dynamics  of  is .  To  stabilize ,  a  yaw  guid-
ance law is designed as
 

rci = −krieψi/
√
|eψi|2 +∆2

ri − β̇i + ψ̇ci (6)

kri ∈ R ∆ri
eri = ri − rci

where  is the guidance law parameter and  is a positive con-
stant. Define , and the dynamics of the yaw target track-
ing error is rewritten as
 

ėψi = −krieψi/
√
|eψi|2 +∆2

ri + eri. (7)

Uci rci

Step 4: Due to the fact that the uncertainties and disturbances can
affect the performance of the control system seriously [10]–[12], it is
necessary  to  recover  the  uncertainties  and  disturbances.  First,  to
obtain  a  smoother  motion  profile  for  RSV,  let  and  pass
through two nonlinear tracking differentiators as
 ■||||||||||■||||||||||■

˙̂Uci = Udi − kU
i1sig

1−1/kU
i3 (Ûci −Uci)

U̇di = −kU
i2sig

1−2/kU
i3 (Ûci −Uci)

˙̂ri = rdi − kr
i1sig

1−1/kr
i3 (r̂i − rci)

ṙdi = −kr
i2sig

1−2/kr
i3 (r̂i − rci)

(8)

Ûci Uci r̂i rci Udi
U̇ci rdi ṙci kU

i1 ∈ R
+

kU
i2 ∈ R

+ kU
i3 > 2 kr

i1 ∈ R
+ kr

i2 ∈ R
+ kr

i3 > 2
ec

Ui = Ûi −Uci ec
ri = r̂i − rci ed

Ui = Udi − U̇ci ed
ri =

rdi − ṙci ec
Ui ec

ri ed
Ui

ed
ri

where  is the estimate of the ;  is the estimate of the ; 
is the estimate of the , and  is the estimate of the . ,

, , , , and  are the design param-
eters.  Define , , ,  and 

. It follows from (8) that the dynamics of the , , , and
 are obtained as:

 

■||||||||||■||||||||||■

ėc
Ui = ed

Ui − kU
i1sig

1−1/kU
i3 ec

Ui

ėd
Ui = −kU

i2sig
1−2/kU

i3 ec
UiUdi − Üci

ėc
ri = ed

ri − kr
i1sig

1−1/kr
i3 ec

ri

ėd
ri = −kr

i2sig
1−2/kr

i3 ec
rirdi − r̈ci.

(9)

U̇i = gui +m−1
ui τui ṙi = gri +m−1

ri τri gui = m−1
ui (cos(βi)( fui+

τwui)−2sin2( βi
2 )τui + sin(βi)( fυi +τwυi)mui/mυi) gri = m−1

ri ( fri+

τwri)
gui gri

From  (2),  the  kinetics  of  the ith  RSV  can  be  rewritten  as
 and ,  where 

 and 
.  Two  fixed-time  ESOs  are  designed  to  estimate  the  unknown

functions  and 
 

˙̂U i = −ku
i1⌈ �Ui⌋αui − ku

i2⌈ �Ui⌋βui + ĝui +m−1
ui τui

˙̂gui = −ku
i3⌈ �Ui⌋2αui−1 − ku

i4⌈ �Ui⌋2βui−1
+ ku

i0sign( �Ui)

˙̂ri = −kr
i1⌈�ri⌋αri − kr

i2⌈�ri⌋βri + ĝri +m−1
ri τri

˙̂gri = −kr
i3⌈�ri⌋2αri−1 − kr

i4⌈�ri⌋2βri−1 + kr
i0sign(�ri) (10)

ku
ia ∈ R

+ kr
ia ∈ R

+(a = 1,2,3,4) Ûi
r̂i ĝui ĝri Ui ri gui gri
�Ui = Ûi −Ui �ri = r̂i − ri αui ∈ (1−εui,1) βui = 1/αui αri ∈ (1−
εri,1) βri = 1/αri εui εri
ku

i0 > 0 kr
i0 > 0

where  and  are the observer gains; ,
, ,  and  are  the  estimates  of , , ,  and  respectively;

, , , , 
,  and  with  and  being  the  small  constants;
 and .

gui gri
g∗ui ∈ R

+ g∗ri ∈ R
+ |ġui| ≤ g∗ui |ġri| ≤ g∗ri

Assumption  1:  For  unknown  functions  and ,  there  are
 and  such that  and .

�gui = ĝui −gui �gri = ĝri −griStep 5: Let  and .  It  follows from equa-
tion (10) that the error dynamics can be expressed as:
 

�̇U i = −ku
i1⌈ �Ui⌋αui − ku

i2⌈ �Ui⌋βui + �gui

�̇gui = −ku
i3⌈ �Ui⌋2αui−1 − ku

i4⌈ �Ui⌋2βui−1 − ġui + ku
i0sign( �Ui)

�̇ri = −kr
i1⌈�ri⌋αri − kr

i2⌈�ri⌋βri + �gri

�̇gri = −kr
i3⌈�ri⌋2αri−1 − kr

i4⌈�ri⌋2βri−1 − ġri + kr
i0sign(�ri). (11)

eUi = Ui − Ûci eri = ri − r̂ci
eUi eri

Define the tracking errors as  and .  Tak-
ing the derivatives of  and  yields
 ■||■||■ėUi = gui +m−1

ui τui − ˙̂Uci

ėri = gri +m−1
ri τri − ˙̂rci.

(12)

Two anti-disturbance fixed-time kinetic control laws are designed
 ■||■||■τui = mui(−kτi1⌈eUi⌋α

τ
ui − kτi2⌈eUi⌋β

τ
ui − ĝui +

˙̂Uci)

τri = mri(−kτi3⌈eri⌋α
τ
ri − kτi4⌈eri⌋β

τ
ri − ĝri + ˙̂rci)

(13)

kτia ∈ R
+(a = 1,2,3,4)

ėUi = −kτi1⌈eUi⌋α
τ
ui − kτi2⌈eUi⌋β

τ
ui−

�gui ėri = −kτi3⌈eri⌋α
τ
ri − kτi4⌈eri⌋β

τ
ri − �gri

where  are the control gains. Then, the tracking
error  systems  (12)  can  be  put  into 

 and .

[eqi,eri] |→ [epi,eψi]
Lemma 1: The tracking error subsystem consisting of (4) and (7):

   is input-to-state stable (ISS).
Ve

i1 =
∑N

i=1(1/2)(eT
piepi+

e2
ψi) Ve

i1 V̇e
i1 ≤

∑N
i=1(−λmax(Ki1)||Hi1||2/√

||Hi1||2 +δimax + ||hi1||||Hi1||) Hi1 = [eT
pi,eψi] Ki1 = diag{Kqi,

Kri} δimax =max{δiq, δir} hi1 = [eqi,eri] λmin(Ki1)
Ki1 ||Hi1||2/√

||Hi1||2 +δimax ≥ ||hi1||/(ai1λmin(Ki1)) V̇e
i1 ≤ −

∑N
i=1{λmin(Ki1)(1−

ai1)}

Proof:  Choose  the  Lyapunov  function  as 
.  The  time  derivative  of  is 

,  where , 
, , ,  and  is  the  mini-

mum  eigenvalue  of  a  square  matrix .  Note  that  as 
, 

. ■

Ûi ĝui r̂i ĝri

Lemma 2:  Under  Assumption  1,  with  the  FTESO (10),  the  states
, , , and  can achieve the estimations in a fixed time.
Proof: Take the following part from error dynamics (11):

 ■||■||■ �̇U i =− ku
i1⌈ �Ui⌋αui + �gui

�̇gui =− ku
i3⌈ �Ui⌋2αui−1

.
(14)

Fi1 = [ �Ui, �gui]T ζi1 = [ �Ui, ((�gui)1/αui )]TDefine  and . Consider a Lya-
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Vu
i1(ζi1) = ζTi1Pi1ζi1 Pi1

Pi1Ai1 +AT
i1Pi1 = −I Ai1

Ai1 = [−ku
i1,1;−ku

i3,0] αui = 1
Ḟi1 = Ai1Fi1 Vu

i1(Fi1)
V̇u

i1(Fi1) = FT
i1(Pi1Ai1 +AT

i1Pi1)Fi1 = −FT
i1Fi1 ≤ 0 σui

αui (1−σui,1)
Vu

i1(ζi1) ϱi1 (0,αui)
V̇u

i1(ζi1) ϱi1 +αui −1
Vu

i1(Fi1) ≤ λmax(Pi)||Fi1||2 V̇u
i1(Fi1) ≤ −||Fi1||2

V̇u
i1(Fi1) ≤ −Vu

i1(Fi1)/λmax(Pi1)
�̇U i = −ku

i2⌈ �Ui⌋βui + �gui �̇gui =−ku
i4⌈ �Ui⌋2βui−1

ζi2 = [ �Ui,

((�gui)1/βui )]T Vi2(ζi2) = ζTi2Pi2ζi2
V̇i2(ζi2) ≤−Vi2(ζi2)(ϱi2+βui−1)/ϱi2/

λmax(Pi2)

punov  function ,  where  is  a  symmetric  posi-
tive definite matrix satisfying  and  is a Hur-
witz  matrix  with .  Setting ,  the  equation
(14)  becomes .  Taking  the  time  derivatives  of 
gives . Define 
as  a  small  constant,  and  (14)  is  locally  asymptotically  stable  by
choosing  in the interval . Then, from Lemma 2 in [5],

 is homogeneous of degree  with  and its derivative
 is  homogeneous  of  degree .  One  has

 and  .  It  renders  that
. The second part of (11) is expressed

as  and .  Define 
.  Consider  a  Lyapunov  function .

Similar to the analysis in (14), one has  
. For

 ■||■||■ �̇U i = −ku
i1⌈ �Ui⌋αui − ku

i2⌈ �Ui⌋βui + �gui

�̇gui = −ku
i3⌈ �Ui⌋2αui−1 − ku

i4⌈ �Ui⌋2βui−1
(15)

ιui Vu
i2(ζi2(t0)) > ιui ιui 0 < ιui <

λmin(Pi2) Vu
i2 ιui T u

i1 =

ϱi2λmax(Pi2)/(βui −1)ι(βui−1)/ϱi2
ui ||ζi2||2 ≤

Vu
i2(ζi2)/λmin(Pi2) ≤ ιui/λmin(Pi2) ≤ 1 Vu

i1(ζi1) ≤ λmax(Pi1)||ζi1||2
Vu

i1(ζi1) < ιui ||ζi1|| = 1 ||ζi1||2 ≤ ||ζi2||2 ≤ 1 Vi1(ζi1) ≤
λmax(Pi1) T u

i2 ≤
ϱi1λ

(ϱi1+αui−1)/ϱi1
max (Pi1)/(1−αui)

T u
i1 +T u

i2 t ≥
T u

i1 +T u
i2 �̇gui = ku

i0sgn( �Ui)− ġui

Vu
i3 = (1/2)(�gui)2 Vu

i3

V̇u
i3 ≤ −(ku

i0 −g∗ui)
√

(2Vu
i3) �gui

T u
i3 ≤

√
2Vu

i3(T u
i1 +T u

i2)/(ku
i0 −g∗ui)

�Ui �gui
Tui ≤ T u

i1 +T u
i2 +T u

i3
�ri �gri

Tri ≤ T r
i1 +T r

i2 +T r
i3 T r

i1 = ϱi4λmax(Pi4)/(βri −1)ι(βri−1)/ϱi4
ri T r

i2 ≤

ϱi3λ
(ϱi3+αri−1)/ϱi3
max (Pi3)/(1−αri) T r

i3 ≤
√

2Vr
i3(T r

i1 +T r
i2)/(kr

i0 −g∗ri)
Pi2 Pi3 Pi4

Ai2 Ai3 Ai4 ϱi2 ϱi3 ϱi4 ιri Pi1 Ai1
ϱi1 ιui

there  exists  such  that  with  being 
.  It  renders  that  reaches  within  a  fixed-time 

. Besides,  the  inequalities 
 and 

hold.  If  and ,  and 
.  The  settling  time  of  the  system  (14)  satisfies 

.  As  a  result,  the  states  of  the  system
(15)  are  convergent  to  zero  within  a  fixed  time .  If 

, the system (11) becomes . Consider a
Lyapunov  function .  The  derivative  of  can  be

obtained as . In summary,  is convergent

to  zero  within the time .  Thus,  the
states  and  are  convergent  to  zero  within  a  fixed  time

 regardless of the initial conditions. Similarly, the
states  and  achieve  the  estimations  within  the  fixed  time

 with , 

, and 
regardless  of  the  initial  conditions.  The  definitions  of , , ,

, , , , , , and  analogize the definitions of , ,
, and . ■

Czi

Theorem 1: Under Assumption 1, by using the optimal total speed
guidance  law  (5),  the  yaw  guidance  law  (6),  the  nonlinear  tracking
differentiator (8), the fixed-time ESOs (10), and the anti-disturbance
kinetic  fixed-time  control  laws  (12),  the  RSVs  described  by  (2)  are
able to cover the centroid of the Voronoi cell (3) at any initial sates
with the safe set . Besides, all the errors in the closed-loop system
are uniformly ultimately bounded.

eqi epi eψi

ec
Ui ec

ri ed
Ui ed

ri
Vi4 = (1/2)(e2

Ui+

e2
ri) Vi4

V̇i4 ≤ −2(1+ατui)/2kτi1(1/2|eUi|2)1+ατui − 2(1+βτui)/2kτi2×
(1/2|eUi|2)1 + βτui − 2(1+ατri)/2kτi3((1/2)|eri|2)1 + ατri − 2(1+βτri)/2 kτi4 ((1/
2)|eri|2)1+βτri +g∗ui|eUi|+g∗ri|eri|
V̇i4 ≤ −ki1(Vi4)αi −21−βi ki2(Vi4)βi +g∗ui|eUi|+g∗ri|eri| ki1 > 0
ki2 > 0 1 > αi > 0 βi > 1

|�gui| |�gri|
V̇i4 ≤ −ki1(Vi4)αi −21−βi ki3(Vi4)βi ki3 = 21−βi ki2

Proof: According to Lemma 1, the tracking errors , , and 
are  uniformly  ultimately  bounded  (UUB).  By [5],  it  can  obtain  that
the errors , , , and  can converge to a small neighborhood
of  the  origin.  Construct  the  Lyapunov  function  as 

.  Taking  the  time  derivative  of  the  along  (12),  it  can  be
obtained  that 

 
.  Then,  the  following  inequality  holds

,  where ,
, ,  and .  It  follows  from  Lemma  2  that  the

errors  and  converge  to  zero  within  a  fixed-time  and
,  where .  Thus,  all  the

tracking errors in the entire closed-loop system are UUB. ■

xy 100 m×100 m
ϕ(q) = 1

pbi = [2,85−15(i−1)]T (i = 1, . . . ,6) p1 = [28,15]T p2 = [65,
43]T p3 = [37,20]T p4 = [12,15]T p5 = [55,50]T p6 = [51,12]T

ψb1 = ψb6 = 0 ψb2 = π/2 ψb3 = −4π/5 ψb4 = π/4 ψb5 = π qi =

[0,0]T ri = 0 E1 = 3600 mV E2 = 3900 mV E3 = 4100 mV
E4 = 3800 mV E5 = 4000 mV E6 = 3700 mV

Kch = 10 Ken k = 0.02 dch c = 0.5
Emax = 4200 mV Emin = 3000 mV kU

i1 = kU
i2 = kr

i1 = kU
i2 = 10

kU
i3 = kr

i3 = 2.5 ku
i1 = ku

i2 = kr
i1 = kr

i2 = 20 ku
i3 = ku

i4 = kr
i3 = kr

i4 = 100
ku

i0 = kr
i0 = 0.05 αui = αri = 0.9 βui = βri = 1.1 Kqi = diag{1,1}

kri = 0.5 kτi1 = kτi2 = kτi3 = kτi4 = 1 ατui = α
τ
ri = 0.9 βτui = β

τ
ri = 1.1

∆qi = ∆ri = 1

125 s 220 s

630

Simulation: Consider  a  multi-RSV  system  including  six  RSVs.
The  environment  has  the  dimensions  of  and

.  The  initial  states  of  six  charging  station  and  six  RSVs  are
set  to , , 

, , , , ,
, , , , , 

, , , , ,
, ,  and .  The  parameters

in  this  case  are  set  to , , , , ,
,  and , ,

, , ,
, ,  and , ,

, , , ,  and
.  The  long  duration  coverage  behavior  and  the  energy

change curve of the RSV battery are depicted in Fig. 1. It shows that
the  optimal  coverage of  the  given coverage area  is  achieved for  the
first time at . At , the red RSV returns to the charging sta-
tion for charging, and other RSVs continue the long duration cover-
age  task.  Next,  the  red  RSV  leaves  the  charging  station  to  perform
the  coverage  task.  Then,  at  s,  the  RSVs  complete  the  optimal
coverage for the second time.

Conclusion: In  this  letter,  an  anti-disturbance  energy-aware  con-
trol  method  for  RSVs  is  proposed  based  on  a  CVT,  two  BE-CBFs,
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Fig. 1. Simulation results.  (a) The coverage behavior; (b) The energy change
curve.
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and  FTESO  to  achieve  long  duration  coverage  task.  By  the  control
method,  RSVs  are  capable  of  achieving  the  long  duration  coverage
within the given coverage area.
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