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Abstract: In practical applications such as driverless driving,intelligent manufacturing,and automated logistics, intelligent agents need
to collaborate efficiently to cope with complex and changing scenarios. However, existing cooperation models still fall short in descri-
bing dynamic changes of cooperation. To address this issue,a multi-agent reinforcement learning framework combining dynamic spati-
otemporal attention mechanism and grouped asynchronous learning strategy is proposed. This framework can better capture spatiotem-
poral collaboration characteristics between agents and improve training efficiency and stability of system. The dynamic spatiotemporal
attention network in framework analyzes trajectories of agents through Temporal Convolutional Network ( TCN) ,extending convolution
range to capture wider range of dependencies. Even without explicit position encoding, multi-layer convolution gradually aggregates
contextual information,enhancing expression ability of spatiotemporal features. By calculating dynamic influence weights between a-
gents, model can optimize allocation of key attention, thereby improving collaboration efficiency of multi-agents,especially in complex
dynamic cooperation tasks. Additionally, grouped asynchronous update module significantly enhances training efficiency and stability
by grouping agents and updating them asynchronously. Agents within group adopt synchronous update strategy, while agents between
groups use asynchronous updates,reducing gradient fluctuations and enhancing robustness of system. Experimental results demonstrate
that this method can more comprehensively model complex collaborative dynamic relationships between agents while maintaining effi-
ciency and robustness.

Keywords : multi-intelligent systems ; multi-intelligent reinforcement learning ;dynamic spatio-temporal attention ; grouped asynchronous

updating ; collaborative intelligences
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Fig.2 Example of the predator-prey scenario
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Table 1 Experimental configuration for predator-prey
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Fig.3 Performance comparison on low complexity

environments
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complexity environments
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Fig.6 Ablation experiments on low complexity environment
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