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摘　 要： 在无人驾驶、智能制造和自动化物流等实际应用中，智能体需要高效协同以应对复杂多变的场景． 然而，现有的合作模

型对合作动态变化的刻画仍显不足． 为解决这一问题，提出一种结合动态时空注意力机制和分组异步学习策略的多智能体强化

学习框架． 该框架能够更好地捕捉智能体之间的时空协作特性，并提高系统的训练效率与稳定性． 框架中的动态时空注意力网

络通过时域卷积网络分析智能体的轨迹，扩展卷积范围以捕捉更大范围的依赖关系，即使没有显式位置编码，也能通过多层卷

积逐步聚合上下文信息，提升时空特征的表达能力． 通过计算智能体间的动态影响权重，模型能够优化关键注意力的分配，从而

提升多智能体的协作效率，特别是在复杂动态合作任务中． 此外，分组异步更新模块通过将智能体分组并异步更新，显著提高训

练效率和稳定性． 组内智能体采用同步更新策略，组间则采用异步更新，从而减少梯度波动，增强系统的鲁棒性． 实验结果表明，
该方法在保持高效性和鲁棒性的同时，能够更全面地建模智能体间复杂的协作动态关系．
关 键 词： 多智能体系统；多智能体强化学习；动态时空注意力；分组异步更新；协作智能体

中图分类号： ＴＰ１８　 　 　 　 　 文献标识码：Ａ　 　 　 　 　 　 文 章 编 号：１０００⁃１２２０（２０２５）１２⁃２８７６⁃０８

Ｓｐａｔｉｏ⁃ｔｅｍｐｏｒａｌ Ａｔｔｅｎｔｉｏｎ⁃ｄｒｉｖｅｎ Ｇｒｏｕｐｅｄ Ａｓｙｎｃｈｒｏｎｏｕｓ Ｍｕｌｔｉ⁃ｉｎｔｅｌｌｉｇｅｎｔ Ｂｏｄｙ Ｒｅｉｎｆｏｒｃｅ⁃
ｍｅｎｔ Ｌｅａｒｎｉｎｇ Ｆｒａｍｅｗｏｒｋ

ＣＨＥＮ Ｔａｏ１，ＴＡＮＧ Ｊｉｎｇｆｅｎｇ１，ＣＨＥＮＧ Ｋｅｙａｎｇ１，ＰＥＮＧ Ｃｈａｎｇｓｈｅｎｇ２

１（Ｓｃｈｏｏｌ ｏｆ Ｃｏｍｐｕｔｅｒ Ｓｃｉｅｎｃｅ ａｎｄ Ｃｏｍｍｕｎｉｃａｔｉｏｎ Ｅｎｇｉｎｅｅｒｉｎｇ，Ｊｉａｎｇｓｕ Ｕｎｉｖｅｒｓｉｔｙ，Ｚｈｅｎｊｉａｎｇ ２１２０１３，Ｃｈｉｎａ）
２（Ｊｉａｎｇｓｕ Ｋｅｈａｉ Ｉｎｔｅｌｌｉｇｅｎｔ Ｓｙｓｔｅｍ Ｃｏ． ，Ｌｔｄ，Ｚｈｅｎｊｉａｎｇ ２１２００９，Ｃｈｉｎａ）

Ａｂｓｔｒａｃｔ：Ｉｎ ｐｒａｃｔｉｃａｌ ａｐｐｌｉｃａｔｉｏｎｓ ｓｕｃｈ ａｓ ｄｒｉｖｅｒｌｅｓｓ ｄｒｉｖｉｎｇ，ｉｎｔｅｌｌｉｇｅｎｔ ｍａｎｕｆａｃｔｕｒｉｎｇ，ａｎｄ ａｕｔｏｍａｔｅｄ ｌｏｇｉｓｔｉｃｓ，ｉｎｔｅｌｌｉｇｅｎｔ ａｇｅｎｔｓ ｎｅｅｄ
ｔｏ ｃｏｌｌａｂｏｒａｔｅ ｅｆｆｉｃｉｅｎｔｌｙ ｔｏ ｃｏｐｅ ｗｉｔｈ ｃｏｍｐｌｅｘ ａｎｄ ｃｈａｎｇｉｎｇ ｓｃｅｎａｒｉｏｓ． Ｈｏｗｅｖｅｒ，ｅｘｉｓｔｉｎｇ ｃｏｏｐｅｒａｔｉｏｎ ｍｏｄｅｌｓ ｓｔｉｌｌ ｆａｌｌ ｓｈｏｒｔ ｉｎ ｄｅｓｃｒｉ⁃
ｂｉｎｇ ｄｙｎａｍｉｃ ｃｈａｎｇｅｓ ｏｆ ｃｏｏｐｅｒａｔｉｏｎ． Ｔｏ ａｄｄｒｅｓｓ ｔｈｉｓ ｉｓｓｕｅ，ａ ｍｕｌｔｉ⁃ａｇｅｎｔ ｒｅｉｎｆｏｒｃｅｍｅｎｔ ｌｅａｒｎｉｎｇ ｆｒａｍｅｗｏｒｋ ｃｏｍｂｉｎｉｎｇ ｄｙｎａｍｉｃ ｓｐａｔｉ⁃
ｏｔｅｍｐｏｒａｌ ａｔｔｅｎｔｉｏｎ ｍｅｃｈａｎｉｓｍ ａｎｄ ｇｒｏｕｐｅｄ ａｓｙｎｃｈｒｏｎｏｕｓ ｌｅａｒｎｉｎｇ ｓｔｒａｔｅｇｙ ｉｓ ｐｒｏｐｏｓｅｄ． Ｔｈｉｓ ｆｒａｍｅｗｏｒｋ ｃａｎ ｂｅｔｔｅｒ ｃａｐｔｕｒｅ ｓｐａｔｉｏｔｅｍ⁃
ｐｏｒａｌ ｃｏｌｌａｂｏｒａｔｉｏｎ ｃｈａｒａｃｔｅｒｉｓｔｉｃｓ ｂｅｔｗｅｅｎ ａｇｅｎｔｓ ａｎｄ ｉｍｐｒｏｖｅ ｔｒａｉｎｉｎｇ ｅｆｆｉｃｉｅｎｃｙ ａｎｄ ｓｔａｂｉｌｉｔｙ ｏｆ ｓｙｓｔｅｍ． Ｔｈｅ ｄｙｎａｍｉｃ ｓｐａｔｉｏｔｅｍｐｏｒａｌ
ａｔｔｅｎｔｉｏｎ ｎｅｔｗｏｒｋ ｉｎ ｆｒａｍｅｗｏｒｋ ａｎａｌｙｚｅｓ ｔｒａｊｅｃｔｏｒｉｅｓ ｏｆ ａｇｅｎｔｓ ｔｈｒｏｕｇｈ Ｔｅｍｐｏｒａｌ Ｃｏｎｖｏｌｕｔｉｏｎａｌ Ｎｅｔｗｏｒｋ（ＴＣＮ），ｅｘｔｅｎｄｉｎｇ ｃｏｎｖｏｌｕｔｉｏｎ
ｒａｎｇｅ ｔｏ ｃａｐｔｕｒｅ ｗｉｄｅｒ ｒａｎｇｅ ｏｆ ｄｅｐｅｎｄｅｎｃｉｅｓ． Ｅｖｅｎ ｗｉｔｈｏｕｔ ｅｘｐｌｉｃｉｔ ｐｏｓｉｔｉｏｎ ｅｎｃｏｄｉｎｇ，ｍｕｌｔｉ⁃ｌａｙｅｒ ｃｏｎｖｏｌｕｔｉｏｎ ｇｒａｄｕａｌｌｙ ａｇｇｒｅｇａｔｅｓ
ｃｏｎｔｅｘｔｕａｌ ｉｎｆｏｒｍａｔｉｏｎ，ｅｎｈａｎｃｉｎｇ ｅｘｐｒｅｓｓｉｏｎ ａｂｉｌｉｔｙ ｏｆ ｓｐａｔｉｏｔｅｍｐｏｒａｌ ｆｅａｔｕｒｅｓ． Ｂｙ ｃａｌｃｕｌａｔｉｎｇ ｄｙｎａｍｉｃ ｉｎｆｌｕｅｎｃｅ ｗｅｉｇｈｔｓ ｂｅｔｗｅｅｎ ａ⁃
ｇｅｎｔｓ，ｍｏｄｅｌ ｃａｎ ｏｐｔｉｍｉｚｅ ａｌｌｏｃａｔｉｏｎ ｏｆ ｋｅｙ ａｔｔｅｎｔｉｏｎ，ｔｈｅｒｅｂｙ ｉｍｐｒｏｖｉｎｇ ｃｏｌｌａｂｏｒａｔｉｏｎ ｅｆｆｉｃｉｅｎｃｙ ｏｆ ｍｕｌｔｉ⁃ａｇｅｎｔｓ，ｅｓｐｅｃｉａｌｌｙ ｉｎ ｃｏｍｐｌｅｘ
ｄｙｎａｍｉｃ ｃｏｏｐｅｒａｔｉｏｎ ｔａｓｋｓ． Ａｄｄｉｔｉｏｎａｌｌｙ，ｇｒｏｕｐｅｄ ａｓｙｎｃｈｒｏｎｏｕｓ ｕｐｄａｔｅ ｍｏｄｕｌｅ ｓｉｇｎｉｆｉｃａｎｔｌｙ ｅｎｈａｎｃｅｓ ｔｒａｉｎｉｎｇ ｅｆｆｉｃｉｅｎｃｙ ａｎｄ ｓｔａｂｉｌｉｔｙ
ｂｙ ｇｒｏｕｐｉｎｇ ａｇｅｎｔｓ ａｎｄ ｕｐｄａｔｉｎｇ ｔｈｅｍ ａｓｙｎｃｈｒｏｎｏｕｓｌｙ． Ａｇｅｎｔｓ ｗｉｔｈｉｎ ｇｒｏｕｐ ａｄｏｐｔ ｓｙｎｃｈｒｏｎｏｕｓ ｕｐｄａｔｅ ｓｔｒａｔｅｇｙ，ｗｈｉｌｅ ａｇｅｎｔｓ ｂｅｔｗｅｅｎ
ｇｒｏｕｐｓ ｕｓｅ ａｓｙｎｃｈｒｏｎｏｕｓ ｕｐｄａｔｅｓ，ｒｅｄｕｃｉｎｇ ｇｒａｄｉｅｎｔ ｆｌｕｃｔｕａｔｉｏｎｓ ａｎｄ ｅｎｈａｎｃｉｎｇ ｒｏｂｕｓｔｎｅｓｓ ｏｆ ｓｙｓｔｅｍ． Ｅｘｐｅｒｉｍｅｎｔａｌ ｒｅｓｕｌｔｓ ｄｅｍｏｎｓｔｒａｔｅ
ｔｈａｔ ｔｈｉｓ ｍｅｔｈｏｄ ｃａｎ ｍｏｒｅ ｃｏｍｐｒｅｈｅｎｓｉｖｅｌｙ ｍｏｄｅｌ ｃｏｍｐｌｅｘ ｃｏｌｌａｂｏｒａｔｉｖｅ ｄｙｎａｍｉｃ ｒｅｌａｔｉｏｎｓｈｉｐｓ ｂｅｔｗｅｅｎ ａｇｅｎｔｓ ｗｈｉｌｅ ｍａｉｎｔａｉｎｉｎｇ ｅｆｆｉ⁃
ｃｉｅｎｃｙ ａｎｄ ｒｏｂｕｓｔｎｅｓｓ．
Ｋｅｙｗｏｒｄｓ：ｍｕｌｔｉ⁃ｉｎｔｅｌｌｉｇｅｎｔ ｓｙｓｔｅｍｓ；ｍｕｌｔｉ⁃ｉｎｔｅｌｌｉｇｅｎｔ ｒｅｉｎｆｏｒｃｅｍｅｎｔ ｌｅａｒｎｉｎｇ；ｄｙｎａｍｉｃ ｓｐａｔｉｏ⁃ｔｅｍｐｏｒａｌ ａｔｔｅｎｔｉｏｎ；ｇｒｏｕｐｅｄ ａｓｙｎｃｈｒｏｎｏｕｓ
ｕｐｄａｔｉｎｇ；ｃｏｌｌａｂｏｒａｔｉｖｅ ｉｎｔｅｌｌｉｇｅｎｃｅｓ

０　 引　 言

在多智能体强化学习（ＭＡＲＬ）的研究领域中，合作与协

调机制的设计长期以来都占据着至关重要的位置． 然而，随着

多智能体系统在无人驾驶、智能制造和虚拟环境等实际应用

中的需求日益增长，现有方法在面对复杂动态环境时暴露出

了一些明显的局限性． 这些局限性不仅影响了系统的学习效

率，还对智能体间协作的有效性提出了挑战．



早期研究主要聚焦于集中式学习策略，例如 Ｌｏｗｅ 等人

提出的 ＭＡＤＤＰＧ，通过集中训练、分散执行的框架，在训练阶

段智能体可以访问全局信息，而在执行阶段则只依赖局部观

测［１⁃４］ ． 这种方法显著减少了学习负担，为该领域的进展铺设

了基石． 然而，随着应用场景的复杂性增加，单纯依赖集中训

练的方法难以适应高度动态和不确定的环境，特别是在智能

体需要实时作出决策的情况下，这种方法的局限性愈加明显．
随后，注意力机制的引入标志着 ＭＡＲＬ 领域的一个转折

点［５⁃１０］ ． 通过增强对智能体之间交互的细腻程度，研究者如

Ｓｕｎｅｈａｇ 等人的 ＶＤＮ 和 Ｒａｓｈｉｄ 等人的 ＱＭＩＸ 利用价值分解

方法应对多智能体环境的复杂性［１１，１２］ ． 然而，这些方法仍然

存在协作不足的问题，智能体往往倾向于独立行动而非协同

作业，无法充分发挥多智能体系统的整体优势［１１⁃１４］ ．
为了进一步增强智能体之间的协作能力，研究者们引入

了基于通信的多智能体强化学习策略． 早期的工作，如 Ｆｏｅｒ⁃
ｓｔｅｒ 等人的研究，通过引入差分通信机制，试图在保证信息有

效传递的同时减少不必要的数据传输，以提升系统的效

率［１５］ ． 然而，随着智能体数量的增加，通信的复杂性也急剧上

升，导致信息过载成为系统扩展性的主要障碍． 为了缓解这一

问题，Ｚａｍｂａｌｄｉ 等人提出了通过限制通信范围的方式，以邻近

智能体为主，来缓解信息过载的问题［１６］ ． 然而，在复杂应用场

景中，如何选择合适的代理邻域仍然是一大挑战，且通信范围

的限制可能导致信息共享不足，从而影响整体协作效果．
近年来，图神经网络（ＧＮＮｓ）的兴起为智能体之间的合

作建模提供了新的视角［１７⁃２３］ ． Ｊｉａｎｇ 等人提出的图卷积强化学

习模型通过将智能体间的交互关系映射为图结构，捕捉了更

丰富的合作特性［２４］ ． 此后，Ｗａｎｇ 等人进一步拓展了这一思

路，提出了一种结合时间和空间维度的图卷积网络，以动态调

整智能体之间的合作关系［２５，２６］ ． 这些方法通过引入图结构来

捕捉智能体之间的复杂互动关系，然而，它们主要聚焦于当前

时间步骤的特征，未能充分考虑时间维度对于合作权重学习

的重要性． 而许多合作行为往往是跨越多个时间步骤的，这意

味着忽视时间维度的合作建模在动态环境中会显著降低协作

的效率和效果．
基于通信的 ＭＡＲＬ 策略与基于 ＧＮＮｓ 的学习方法各有

侧重，适用于不同的应用场景． 基于通信的 ＭＡＲＬ 策略在智

能体数量较少时能有效促进信息传递和协作，但在大规模系

统中面临信息过载和通信成本高的问题． 而 ＧＮＮｓ 方法虽然

在处理大规模多智能体系统时展现了更高的效率和鲁棒性，
但其模型复杂度高，训练难度大，且在时间维度上的建模尚需

进一步完善．
在策略更新方法方面，Ａｃｔｏｒ⁃Ｃｒｉｔｉｃ（ＡＣ）方法作为一种结

合值函数逼近于策略梯度的技术，在多智能体强化学习中寻

求平衡直接策略探索与价值估计的优点［２７］ ． ＡＣ 框架通过反

馈循环迭代更新策略生成的 ａｃｔｏｒ 部分和评估策略价值的

ｃｒｉｔｉｃ 部分，尽管取得了一定的成就，但仍然面临计算效率低

下和策略多样性不足的问题． 特别是在多智能体环境中，每一

轮迭代中计算优势函数的需求可能导致学习速率的缓慢．
Ａ２Ｃ 通过多线程同步策略优化，依据所有执行者的反馈进行

调整，而 Ａ３Ｃ 通过异步更新策略进一步加速学习，增强策略

多样性，但它们仍然受到异步更新可能导致的策略不一致性

与梯度偏差积累的影响，并且在大规模部署中可能加剧资源

竞争和通信成本［２８］ ． 这些方法在探索与利用之间寻找平衡点

时常遇到困难，有时会陷入局部最优解，延长收敛时间，限制

了系统的整体表现．
针对这些现有方法在处理动态多智能体系统中的局限

性，本文提出了一种新的多智能体强化学习方法—时空分组

异步演员⁃评论家（Ｓｐａｃｅ⁃Ｔｉｍｅ Ｇｒｏｕｐｉｎｇ Ａｓｙｎｃｈｒｏｎｏｕｓ Ａｃｔｏｒ⁃
Ｃｒｉｔｉｃ，ＳＴＧＡ⁃ＡＣ） ． 该方法采用动态时空注意力网络来提取

智能体间的时空合作关系，并通过分组异步更新方法对模型

参数进行高效更新． 这种创新方式不仅适应环境的快速变化，
还能够通过优化智能体间的合作策略，实现更高的学习效率

和决策质量，解决了传统方法在可扩展性和实时更新方面的

问题． 本文的主要贡献如下：
１）将动态注意力机制与时间卷积网络（ＴＣＮ） ［２９⁃３３］ 相结

合，不仅捕捉智能体行为的时间序列特征，还间接蕴含了智能

体之间的空间关系，使模型能更精确地区分不同位置上智能体

的行为模式． 通过这种结合，模型在低复杂度实验场景中的平

均奖励值较基线方法提高了 １５％左右，有效提升了协作效率；
２）引入了分组内同步与组间异步更新策略，有效地平衡

了训练效率与模型稳定性． 相比传统方法，该策略显著减少了

计算资源竞争与通信瓶颈，在中等复杂度实验场景中使用了

分组异步策略的 ＭＡＤＤＰＧ⁃ＧＡ 对比原始的 ＭＡＤＤＰＧ 算法，
将平均奖励值提升约 ４５％ ；ＭＡＤＤＰＧ⁃ＳＴＧＡ 对比没有使用分

组异步策略的 ＭＡＤＤＰＧ⁃ＳＴ 在训练过程中将波动幅度减少

了约 １０％ ；
３）在多智能体粒子环境中对所提的 ＳＴＧＡ⁃ＡＣ 方法进行

了实验评估． 实验结果显示，ＳＴＧＡ⁃ＡＣ 在各复杂度场景中的

表现均优于其他基线方法，特别是在中等复杂度场景中，收敛

成功率达到约 ８５％ ． 这些结果不仅验证了 ＳＴＧＡ⁃ＡＣ 的高效

性与优越性，还展示了其在复杂实际应用场景中的巨大潜力，
为多智能体系统注入了新颖的交互理解与更新策略．

１　 基础理论

１． １　 部分可观测马尔科夫决策过程

多智能体强化学习（ＭＡＲＬ）通过扩展经典的马尔可夫决

策过程 （Ｄｅｃｅｎｔｒａｌｉｚｅｄ Ｐａｒｔｉａｌｌｙ Ｏｂｓｅｒｖａｂｌｅ Ｍａｒｋｏｖ Ｄｅｃｉｓｉｏｎ
Ｐｒｏｃｅｓｓ，Ｄｅｃ⁃ＰＯＭＤＰｓ） ［３４］来对问题进行建模，以适应多智能

体环境中的复杂交互． 这一框架可形式化为一个 Ｎ 元组的分

量表示，具体形式为 ＜ Ｎ，Ｓ，｛Ａｉ｝ Ｎ
ｉ ＝ １，Ｔ ＞ ，其中 Ｎ 代表参与的

智能体总数，Ｓ 定义了所有可能的状态空间，而每个智能体 ｉ
拥有自己的动作集合 Ａｉ（ ｉ ＝ １，…，Ｎ） ． 奖励函数 Ｒｉ：Ｓ × Ａ１ ×
… × ＡＮ→［０，１］映射出智能体 ｉ 的回报，而状态转移函数 Ｔ ＝
Ｓ × Ａ１ ×… × ＡＮ→［０，１］描述了状态变化的概率，决定下一步

的可能性．
具体地，聚焦于部分可观测的马尔可夫博弈场景，智能体

各自接收到局部观测信息 ｏｉ，并根据其局部观测值决定其动

作 ａｉ∈Ａ，联合动作表示为 ａ ＝ （ａ１，…，ａＮ）∈Ａ，智能体会根据

此构建策略 πｉ：ｏｉ→Ｐ（Ａｉ），其中 Ｐ（Ａｉ）表示行动的概率分布，
Ｐ 是一个状态转移函数． 这意味着每个智能体基于其有限的

局部视角去选择行动． 智能体追求的目标是最大化其累积奖
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励，定义为 Ｒｉ ＝ ∑
Ｔ

ｔ ＝ ０
γＴｒＴｉ ，这里是折扣因子，位于［０，１］区间内，

以平衡即时与长远利益．
在本研究中，设定一个完全合作的环境，每个智能体 ｉ 仅

能接收到局部观测 ｏｉ ． 对于任一时序 ｔ，每个智能体基于其策

略确定动作 πｉ，集体行动后，环境回馈一个全局奖励 ｒ． 该奖

励信号被用来驱动网络的更新过程，优化策略，以期达成更高

效的合作与奖励收获．
１． ２　 演员⁃评论家（ａｃｔｏｒ⁃ｃｒｉｔｉｃ）算法

ａｃｔｏｒ⁃ｃｒｉｔｉｃ 算法是一种结合价值方法和策略梯度方法优

势的强化学习技术，旨在高效地学习多智能体在复杂环境中

的最优策略． 它通过分离学习过程为两个关键角色来实现这

一目标：一个是负责探索和决策的“演员” （ ａｃｔｏｒ），另一个是

评估这些决策质量的“评论家”（ｃｒｉｔｉｃ） ．
演员部分对应于策略函数 πθ（ａ ｜ ｓ），其任务是基于当前

状态 ｓ 学习选择最佳动作 ａ 的策略． 简而言之，演员就像是舞

台上的演员，依据剧本（策略）表演，其目标是最大化长期奖

励． 在 ａｃｔｏｒ⁃ｃｒｉｔｉｃ 框架中，演员根据评论家提供的反馈来调整

其策略参数，以便逐渐提升其在环境中的表现． ａｃｔｏｒ 的更新

通常基于梯度原则，通过策略梯度来优化策略 θ，使得期望回

报最大． 在策略梯度更新中，优势函数 Ａ（ｓ，ａ）起着关键作用，
衡量相对于当前策略的额外收益，优势函数可以用动作价值

函数 Ｑ（ｓ，ａ）和状态价值函数 Ｖ（ｓ）来计算：
Ａ（ｓ，ａ） ＝ Ｑ（ｓ，ａ） － Ｖ（ｓ） （１）

策略梯度的更新公式可以表示为：
ÑＪ（θ） ＝ Ｅｓ ～ ｄπ，ａ ～ πθ［Ñθ ｌｏｇπθ（ａ ｜ ｓ）Ａ（ｓ，ａ）］ （２）

这里 ｄπ是遵循策略 π 下的状态分布，ｓ ～ ｄπ 表示从遵循

策略 π 的状态分布中抽取的一个状态 ｓ． 而 ａ ～ πθ 表示在状

态 ｓ 下从一个遵循策略 πθ 的动作分布中抽取一个动作 ａ．

评论家则扮演评估者的角色，它估计当前策略下状态的

价值函数 Ｖ（ｓ）或动作价值函数 Ｑ（ ｓ，ａ） ． 这为演员提供了关

于其行动质量的即时反馈，类似于观众或影评人对演员表现

的评判． 评论家利用时序差分（Ｔｅｍｐｏｒａｌ Ｄｉｆｆｅｒｅｎｃｅ，ＴＤ）学习

来更有效地估计值函数，从而减少策略梯度方法中常见的高

方差问题，加快学习进程，ＴＤ 误差的定义如下：
δ ＝ ｒ ＋ γＶ（ｓｔ ＋ １） － Ｖ（ｓｔ） （３）

评论家更新状态价值函数 Ｖ（ｓ）或动作价值函数 Ｑ（ｓ，ａ）
的规则为：

Ｖ（ｓ）←Ｖ（ｓ） ＋ βδ （４）
Ｑ（ｓ，ａ）←Ｑ（ｓ，ａ） ＋ βδ （５）

其中，β 控制了当前值函数 Ｖ（ｓ）更新的幅度．
结合二者，Ａｃｔｏｒ⁃Ｃｒｉｔｉｃ 算法能够实现在线更新，即在每

个时间步根据最新的状态和奖励信息调整策略，无需等待整

个序列结束． 这显著提高了学习效率，尤其是在处理具有大量

状态或连续动作空间的任务时．

２　 时空分组异步演员⁃评论家（ＳＴＧＡ⁃ＡＣ）方法

２． １　 ＳＴＧＡ⁃ＡＣ 框架总览

ＳＴＧＡ⁃ＡＣ 的框架结构如图 １ 所示，这是一个结合动态时

空注意力机制和分组异步更新方法的多智能体强化学习框

架． 首先，智能体的观测轨迹通过时间卷积网络（ＴＣＮ）提取

出时间特征． 接着，利用权重网络计算智能体间的动态影响权

重，形成注意力矩阵，从而建模智能体之间的合作关系． 通过

软注意力机制和特征更新步骤，每个智能体根据其他智能体

的重要性自我更新． 最后，使用分组内同步与组间异步更新对

智能体的学习策略进行更新．

图 １　 ＳＴＧＡ⁃ＡＣ 示意图

Ｆｉｇ． １　 Ｉｌｌｕｓｔｒａｔｉｏｎ ｏｆ ＳＴＧＡ⁃ＡＣ

２． ２　 动态时空注意力

多智能体强化学习中，智能体的长期行为对于多智能体

之间的合作关系建模至关重要． 在多智能体系统中，每个智能

体会从其他智能体那里收集关于其观察到的环境和采取的行

动的信息，本文将利用这些数据对智能体之间的时空合作关

系进行建模． 这一过程中，计算每个代理 ｉ 的时空间依赖特征

Ｈｉ
ｔ，需要综合所有智能体的局部观测 ｏ ＝ （ｏ１，…，ｏＮ）和行动

ａ ＝ （ａ１，…，ａＮ），其中 ｉ∈｛１，…，Ｎ｝ ．
下面将详细描述动态时空注意力网络的构建过程． 首先，

将每个智能体的观测轨迹 τｉ 输入到一个时间卷积网络中

ψｔｃｎ，该模型负责从时间序列中提取合作特征 ｆｔｃ＿ｉ ． 这些特征在

不同的时间步 ｔ 被送入一个权重网络 φｗ，计算智能体 ｉ 在该

时间步相对于其他智能体 ｊ 的影响权重 ｗｉｊ
ｔ ． 这样，对于每个

时间步 ｔ，输出的权值向量 ｗｉ
ｔ 包括了与所有其他智能体的权
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重 ｗｉ１
ｔ ，ｗｉ２

ｔ ，…，ｗｉＮ
ｔ ，反映了智能体 ｉ 在多智能体环境中与其他

智能体的动态合作关系．
通过卷积运算，ＴＣＮ 模型可以灵活地处理时间序列数

据，适合捕捉局部时间特征中的合作信息． ＴＣＮ 模型由 Ｎ 层

时间卷积层构成，每一层都包括了一个扩展的一维卷积滤波

器 ＷＦｔ和残差连接 ＷＦｒ，同时使用 ＲｅＬＵ（·）激活函数． 具体

来说，对于输入的序列特征 ｘ∈Ｒｎ的第 ｉ 个元素 ｘｉ，扩展卷积

的计算公式 Ｆ 可以表达为：

Ｆ（ ｉ） ＝ （ｘ ×ＷＦｔ）（ ｉ） ＝ ∑
ｋ － １

ｊ ＝ ０
ＷＦｔ·ｘｉ － ｄ·ｊ （６）

其中 ｘｉ － ｄ·ｊ表示在时间步向前看 ｄ·ｊ 个时间步的输入特征，ｄ
是膨胀因子，ｋ 是滤波器的大小．

每个时间卷积（ＴＣ）层接收前一层的输出作为其输入． 特
别地，第 １ 层以智能体的历史轨迹作为输入特征． 在每层中，
使用 ＲｅＬＵ 激活扩展卷积滤波器的输出 ＨＴＣＮｋ，计算如下：

Ｈ^ＴＣＮｋ ＝ ＲｅＬＵ（ＷＦｔ∗ＨＴＣＮｋ － １ ＋ ｂｔ） （７）
ＨＴＣＮｋ ＝ ＨＴＣＮｋ － １ ＋ＷＦｒ∗Ｈ^ＴＣＮｋ ＋ ｂｒ （８）

其中∗表示卷积算子，ＷＦｔ∈Ｒ３ × ｎｆ × ｎｆ为核数为 ３ 的扩展卷积

滤波器的权重，ｎｆ 为该滤波器的个数． ＷＦｒ∈Ｒ１ × ｎｆ × ｎｆ为残差连

接中 １ 维卷积的权值，ｂｔ 和 ｂｒ 是偏置项． 通过扩大卷积和增

加 ＴＣ 层数可以扩大模型的感受野，公式表示为：
ｒｆ（ｋ） ＝ ３（ｋ ＋ １） － １ （９）

在此基础上，本文提出一种新的方法，以动态注意力机制

构建智能体间的合作关系． 此方法利用 ＴＣＮ 模型输出的权重

ｗｉ 来形成一个动态注意力权重矩阵 Ａｉ
ｔ ． 应用 ｓｏｆｔｍａｘ 函数，为

每个智能体分配对其他智能体的关注程度． 计算公式如下：

Ａｉｊ
ｔ ＝

ｅｘｐ（ｗｉｊ
ｔ ）

∑
ｎ

ｋ ＝ １
ｅｘｐ（ｗｉｋ

ｔ ）
（１０）

其中 Ａｉｊ
ｔ 表示智能体 ｉ 在时间 ｔ 对智能体 ｊ 的注意力权重． 使

用 ｓｏｆｔｍａｘ 确保每个智能体的注意力权重在所有智能体上的

总和为 １，从而提供一种归一化的方式来解释这些权重．
通过使用动态注意力矩阵和智能体的特征，可以对智能

体的特征进行更新． 这一步骤模拟智能体根据其他智能体的

重要性进行自我更新的过程． 特征更新如下：

Ｈｉ
ｔ ＝ ＲＥＬＵ（∑

ｎ

ｊ ＝ １
Ａｉｊ

ｔ Ｈｊ
ｔＷ） （１１）

其中，智能体 ｉ 的特征向量矩阵 Ｈｉ
ｔ 表示基于当前时间步所有

其他智能体的特征向量矩阵 Ｈｊ
ｔ 加权求和，并结合可学习参数

矩阵 Ｗ．
为了进一步利用时间信息，增加一个时间融合层来整合

各时间步的特征，增强模型对时间动态的理解． 这通过以下方

式实现：
Ｈｉ

ｔ ＝ ＲＥＬＵ（ＴｅｍｐｏｒａｌＣｏｎｖ（［Ｈｉ
ｔ，Ｈｉ

ｔ－１］）） （１２）
其中 ＴｅｍｐｏｒａｌＣｏｎｖ（·）是一个一维卷积操作，目的是整合智

能体过去的特征信息，以加强其时间序列的连贯性．
时空动态注意力模块输出的特征 Ｈｉ

ｔ 通过整合每个智能

体的时间和空间信息，将捕捉智能体之间复杂的交互关系． 这
些特征反映了智能体在环境中的动态合作情况，为后续多智

能体强化学习模型提供智能体之间的时空特征支持．
为了实现上述机制，时间卷积网络（ＴＣＮ）设定了以下参

数：卷积核大小为 ３，使用 ３ 层时间卷积层，滤波器数量分别

为 ６４、１２８、２５６． 每层卷积后采用 ＲｅＬＵ 激活函数，并使用 ０． ２
的 ｄｒｏｐｏｕｔ 率以防止过拟合． 权重网络采用两层全连接结构，
包含 １２８ 和 ６４ 个神经元，每层后均使用 ＲｅＬＵ 激活． 最终生

成的注意力矩阵维度为 ｎ × ｎ，其中 ｎ 为智能体数量，动态调

整智能体间的合作关系．
２． ３　 分组异步更新

本节将详细介绍如何对 ａｃｔｏｒ 进行分组，并异步更新全局

模型的过程．
为了充分利用计算资源并减少同步更新时的等待延迟，

本文将工作线程按组分配，每个组包含若干个线程． 分组的目

的是减少更新的等待时间，并充分利用计算资源． 设 Ｎ 为总

线程数，Ｋ 为组数（可以根据任务的并发性和每组的计算能力

灵活调整组的大小和数量），则每组大约包含 Ｎ ÷ Ｋ 个线程．
接着，每个线程独立执行并与环境交互，收集一系列的轨迹：

τｇ
ｋ ＝ （ａ０，ｏ０，…，ａＴ，ｏＴ） （１３）

其中，τｇ
ｋ 表示第 ｋ 个线程在组 ｇ 中采集的轨迹数据． 每个线程

计算其轨迹的累积奖励和梯度．
在分组异步更新算法中，优势函数 Ａ（ ｓｔ，ａｔ）是核心组成

部分，用于指导策略更新． 优势函数定义为动作的期望回报与

当前状态的值函数的差值，即：
Ａ（ｓｔ，ａｔ） ＝ Ｑ（ｓｔ，ａｔ） － Ｖ（ｓｔ） （１４）

然而，由于直接计算 Ｑ（ ｓｔ，ａｔ ）需要未来所有回报的信

息，此处采用 ＴＤ ｅｒｒｏｒ（Ｔｅｍｐｏｒａｌ Ｄｉｆｆｅｒｅｎｃｅ ｅｒｒｏｒ）作为优势函

数的近似：
ｒｔ ＋ γＶ（ｓｔ ＋ １） － Ｖ（ｓｔ） （１５）

其中 γ 是折扣因子．
每个线程根据自己从环境中采样的轨迹 τｉ 计算策略和

价值函数的梯度． 这里的优势函数用于指导组内策略（ａｃｔｏｒ）
的梯度计算：
ÑθＬｇ

ａｃｔｏｒ，ｋ（θ） ＝∑ｔ Ñθ ｌｏｇπθ（ａｔ ｜ ｓｔ）（ｒｔ ＋ γＶθ（ｓｔ ＋ １） － Ｖθ（ｓｔ））
（１６）

对于价值函数（ｃｒｉｔｉｃ）的更新，则利用均方误差损失：
ÑθｖＬ

ｇ
ｃｒｉｔｉｃ，ｋ（θｖ） ＝∑ｔ２（Ｖθｖ（ｓｔ） － （ｒｔ ＋ γＶθｖ（ｓｔ ＋ １）））ÑθＶθｖ（ｓｔ）

（１７）
其中，Ｌｇ

ａｃｔｏｒ，ｋ和 Ｌｇ
ｃｒｉｔｉｃ，ｋ分别表示组 ｇ 中第 ｋ 个线程计算的策略

网络和价值网络的损失．
组内所有线程的策略和价值函数梯度被汇总，并平均化

以减少单个样本的噪声影响：

Δθｇ ＝ １
Ｍ ∑

Ｍ

ｋ ＝ １
ÑθＬｇ

ａｃｔｏｒ，ｋ（θ） （１８）

Δθｖｙ ＝
１
Ｍ ∑

Ｍ

ｋ ＝ １
ÑθｖＬｇ

ｃｒｉｔｉｃ，ｋ（θｖ） （１９）

该方法的主要动机是利用组内的数据多样性来减少梯度

估计的方差，并避免频繁的全局同步，从而加速学习过程而不

牺牲性能．
组内所有线程完成任务并汇总梯度后，使用这些累积的

梯度异步更新全局模型：
θ⇐θ ＋ αΔθｇ （２０）

θｖ⇐θｖ ＋ αｖΔθｖｙ （２１）
其中 α 和 αｖ 分别是策略和价值函数的学习率，这一更新过程

依然保持异步的特性，即不同组之间的更新是独立的．
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更新全局模型后，组内的所有线程从全局模型中同步最

新的网络参数 θ 和 θｖ ． 这确保了所有线程都能基于最新学到

的策略继续进行探索和学习，同时保证了全局知识的及时

传播．
在具体实现中，ＳＴＧＡ⁃ＡＣ 使用了基于组内同步和组间异

步更新的策略． 通过动态调整每组智能体的大小和更新频率，
框架在提升训练速度的同时，保持了模型的稳定性． 这种策略

有效地减少了智能体之间的策略冲突，并显著加快了在复杂

环境中的学习过程．

３　 实验与分析

本节在多智能体粒子仿真环境（ＭＰＥ） ［３５，３６］ 中测试了

ＳＴＧＡ⁃ＡＣ 处理多种复杂任务的表现，这是 ＭＡＲＬ 领域中被

广泛使用以评估算法性能的仿真环境． 首先在 ３ 种不同环境

复杂度的捕食者⁃猎物任务中进行对比实验，以证明 ＳＴＧＡ⁃
ＡＣ 的整体表现；然后在其中两种可以相对明显表现学习表

现的场景中进行消融实验，来验证动态时空注意力和分组异

步更新方法对性能的影响．
３． １　 捕食者⁃猎物任务

实验环境为二维连续的捕食者⁃猎物环境，如图 ２ 所示．
场景中包含 ４ 种类型的实体：Ｆ 片森林、Ｓ 个食物、Ｚ 个障碍物

和智能体（Ｋ 个捕食者和 Ｌ 个猎物） ． 捕食者需要合作追赶猎

物，成功捕获猎物会获得奖励，反之则会受到惩罚． 环境中的

捕食者可以利用环境中的固定实体为己方获取优势，包括利

用森林进行埋伏，以及将猎物驱赶至障碍物处以限制其活动

范围，但同时猎物也可以利用这些实体进行躲藏． 环境中的捕

食者可以利用环境中的固定实体为己方获取优势，包括利用

森林进行埋伏，以及将猎物驱赶至障碍物处以限制其活动范

围，但同时猎物也可以利用这些实体进行躲藏．

图 ２　 捕食者⁃猎物场景示例

Ｆｉｇ． ２　 Ｅｘａｍｐｌｅ ｏｆ ｔｈｅ ｐｒｅｄａｔｏｒ⁃ｐｒｅｙ ｓｃｅｎａｒｉｏ

通过调整场景中实体的数量，设计了 ３ 种不同复杂度的

仿真场景． 所有实验均在 ＣＰＵ Ｉｎｔｅｌ Ｘｅｏｎ Ｇｏｌｄ ５２１８Ｒ 和 ＧＰＵ
Ｎｖｉｄｉａ ＲＴＸ ３０９０ 上使用 ５ 个随机种子构建，具体实验配置如

表 １ 所示．
３． ２　 对比实验

本实验场中猎物的策略使用了 ＤＱＮ［３７］ ，而本文提出的

ＳＴＧＡ⁃ＡＣ 将与多种基线方法作为捕食者的策略进行对比实

验． 实验选择了 ＭＡＤＤＰＧ［１］ 、反事实多智能体策略梯度方法

（ｃｏｕｎｔｅｒ⁃ｆａｃｔｕａｌ ｍｕｌｔｉ⁃ａｇｅｎｔ ｐｏｌｉｃｙ ｇｒａｄｉｅｎｔ，ＣＯＭＡ） ［４］ 、使用

软注意力的多智能体强化学习方法（ｍｕｌｔｉ⁃ａｇｅｎｔ ａｃｔｏｒ⁃ｃｒｉｔｉｃ，

ＭＡＡＣ） ［３８］这 ３ 种基于 ＣＴＤＥ 框架的 ＭＡＲＬ 算法作为基线

方法．

表 １　 捕食者⁃猎物环境的实验设置

Ｔａｂｌｅ １　 Ｅｘｐｅｒｉｍｅｎｔａｌ ｃｏｎｆｉｇｕｒａｔｉｏｎ ｆｏｒ ｐｒｅｄａｔｏｒ⁃ｐｒｅｙ
ｅｎｖｉｒｏｎｍｅｎｔｓ

Ｋ Ｌ Ｆ Ｓ Ｚ 环境复杂度

４ ３ ２ － － 低

４ ３ ２ １ － 中

６ ２ ２ ２ １ 高

　 　 在 ３ 个不同复杂度的捕食者⁃猎物场景中进行 １５００ 轮训

练，同时记录每种方法的平均奖励值． 在实验中，为确保

ＳＴＧＡ⁃ＡＣ 与基线方法的公平比较，所有模型均使用相同的超

参数设置． 具体包括：评论家网络和行动者网络的学习率均设

为 ０． ００１，优化器使用 Ａｄａｍ． Ａｄａｍ 优化器结合了动量和 ＲＭ⁃
Ｓｐｒｏｐ 的优点，能够自适应地调整每个参数的学习率，从而加

速收敛并提高模型性能． 在多智能体系统中，尤其是在复杂的

捕食者⁃猎物实验场景中，状态和动作空间都非常大，模型需

要在大量数据和复杂交互中进行有效学习． Ａｄａｍ 优化器的

自适应学习率特性使得模型能够在训练初期快速收敛，并在

后期保持稳定的性能，这对于长时间的训练过程尤为重要． 此
外，Ａｄａｍ 优化器计算效率高，对超参数不敏感，具有良好的

泛化能力和稳定的收敛性，特别适合处理大规模数据集和复

杂模型． 折扣因子（γ）设为 ０． ９９，探索率（ε）初始值为 １． ０，并
且每 １００ 轮训练后减小 ０． ０５，直到达到最小值 ０． １． 在具体实

现中，ＳＴＧＡ⁃ＡＣ 框架采用了动态分组策略，每组初始包含 ２
个智能体，组内同步更新每 ５ 个时间步执行一次，组间异步更

新每 １５ 个时间步执行一次． 组内的成员可以根据训练中的表

现和任务需求进行调整，以提高不同智能体之间的协作效率．
本实验中使用随机打乱的规则进行重分组，这种策略的主要

依据是提高智能体之间的合作多样性和适应性，防止因固定

分组而产生的局部最优问题，同时通过探索更多的合作方式，
进一步提升多智能体系统的整体协作效率和鲁棒性．

图 ３　 低复杂度环境下的性能对比

Ｆｉｇ． ３　 Ｐｅｒｆｏｒｍａｎｃｅ ｃｏｍｐａｒｉｓｏｎ ｏｎ ｌｏｗ ｃｏｍｐｌｅｘｉｔｙ
ｅｎｖｉｒｏｎｍｅｎｔｓ

图 ３ ～图 ５ 展示了保持训练参数相对一致时，各个方法

在捕食者⁃猎物场景中奖励得分的平均值． 在简单复杂度的场

景中，本文提出的 ＳＴＧＡ⁃ＡＣ 刚开始的表现并不突出，同样使

用注意力机制的 ＭＡＡＣ 也有相同的问题，但最终这两种方法

均能收敛到更高的平均奖励值． ＳＴＧＡ⁃ＡＣ 对比 ＭＡＡＣ，更复

杂的网络设计带来前期的学习速度相对落后，后期则占据了
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得分上的优势；在中等复杂度的场景中，各个方法之间的差距

体现得更加明显，没有使用注意力机制的 ＭＡＤＤＰＧ 和 ＣＯ⁃
ＭＡ 相对表现不佳，ＣＯＭＡ 使用了反事实的思想来区分单个

智能体对系统奖励的贡献，一定程度上带来了性能上的提升，
这也体现在了奖励值曲线上． 而使用了注意力机制的 ＳＴＧＡ⁃
ＡＣ 和 ＭＡＡＣ 均取得了不错的得分． ＳＴＧＡ⁃ＡＣ 由于特征提取

网络更加复杂，动态时空注意力模块能够有效捕捉智能体之

间的时空依赖关系，使得智能体在决策时充分考虑到其他智

能体的状态和行动，从而在复杂环境中获得更优的策略． 然
而，这种复杂的网络设计在训练初期导致了学习速度较慢，表

图 ４　 中等复杂度环境下的性能对比

Ｆｉｇ． ４　 Ｐｅｒｆｏｒｍａｎｃｅ ｃｏｍｐａｒｉｓｏｎ ｏｎ ｍｅｄｉｕｍ
ｃｏｍｐｌｅｘｉｔｙ ｅｎｖｉｒｏｎｍｅｎｔｓ

现并不佳，并且中期出现了较大的波动． 尽管如此，随着训练

的深入，ＳＴＧＡ⁃ＡＣ 逐渐提取出更有效的特征，并利用这些特

征在中等复杂度的环境中找到了独立性与合作性之间的平

衡，最终后期依然取得了最高的平均奖励值且收敛到了相对

稳定的策略；在复杂度最高的场景中，４ 种方法的表现都不

佳，ＭＡＤＤＰＧ 甚至难以学习到有效的策略，相比之下其他 ３
种方法虽然最终获得了一定的得分，但是依旧无法收敛到平

稳的策略，ＳＴＧＡ⁃ＡＣ 相对于其他 ３ 种方法虽然最终获得的平

均奖励值略高，但也没有取得明显优势．

图 ５　 高复杂度环境下的性能对比

Ｆｉｇ． ５　 Ｐｅｒｆｏｒｍａｎｃｅ ｃｏｍｐａｒｉｓｏｎ ｏｎ ｈｉｇｈ
ｃｏｍｐｌｅｘｉｔｙ ｅｎｖｉｒｏｎｍｅｎｔｓ

由此可见，ＳＴＧＡ⁃ＡＣ 在处理场景相对复杂的任务时，有
着很明显的性能优势． 这主要得益于其动态时空注意力机制

和出色的特征提取能力，使得模型能够更好地捕捉智能体间

复杂的时空合作关系，从而在多变的环境中更有效地学习合

作策略． 然而，在低复杂度的场景中，由于 ＳＴＧＡ⁃ＡＣ 的网络

结构较为复杂，模型需要更多的时间来调整和适应其复杂的

特征提取与注意力机制，因此需要更长的训练时间才能达到

策略收敛． 而在处理更高复杂度的任务时，尽管 ＳＴＧＡ⁃ＡＣ 具

备优势，但由于环境的不确定性和智能体间高度动态的交互，
模型在学习过程中可能会出现波动和不稳定的情况，类似的

问题也在其他基线算法中出现，表明在极其复杂的环境中，寻
找有效策略的学习依然充满挑战．
３． ３　 消融实验

为了测试动态时空注意力模块和分组异步更新方法对性

能提升的影响，本文设计了消融实验． 实验对比了原始的

ＭＡＤＤＰＧ，使用动态时空注意力模块而不使用分组异步更新

方法的 ＭＡＤＤＰＧ⁃ＳＴ，使用分组异步更新方法而不使用动态

时空注意力模块的 ＭＡＤＤＰＧ⁃ＧＡ，以及使用了动态时空注意

力模块和分组异步更新方法的 ＭＡＤＤＰＧ⁃ＳＴＧＡ． 实验环境选

择了可以相对明显表现学习曲线变化的低复杂度及中等复杂

度的捕食者⁃猎物环境．
图 ６、图 ７ 展示了不同多智能体粒子环境下的消融实验．

首先，比较 ＭＡＤＤＰＧ 和 ＭＡＤＤＰＧ⁃ＳＴ 的性能表现． 实验结果

表明，在低复杂度的捕食者⁃猎物环境中，ＭＡＤＤＰＧ⁃ＳＴ 对比

原始的 ＭＡＤＤＰＧ 有着一定的性能提升，但是 ＭＡＤＤＰＧ⁃ＳＴ
的策略收敛速度却并不占优势，这可能是复杂的网络结构为

训练带来了负担． 在中等复杂度的场景中，ＭＡＤＤＰＧ 无法学

习到比较好的策略，问题根源可能在于在复杂环境里，ＭＡＤ⁃
ＤＰＧ 中的价值函数估计存在偏差， 导致智能体行为偏离最优

图 ６　 低复杂度环境下的消融实验

Ｆｉｇ． ６　 Ａｂｌａｔｉｏｎ ｅｘｐｅｒｉｍｅｎｔｓ ｏｎ ｌｏｗ ｃｏｍｐｌｅｘｉｔｙ ｅｎｖｉｒｏｎｍｅｎｔ

路径，甚至学会非最优策略． 此外，ＭＡＤＤＰＧ 在执行阶段缺乏

有效的通信学习机制，每个智能体的决策主要依赖于自己的

局部观测，没有充分利用其他智能体的信息，而智能体的最佳

行动通常依赖于其他智能体的状态和行动． 相比之下，ＭＡＤ⁃
ＤＰＧ⁃ＳＴ 充分利用了其他智能体的观测，带来显著的性能提

升，最终也学习到了相对稳定的策略．

图 ７　 中等复杂度环境下的消融实验

Ｆｉｇ． ７　 Ａｂｌａｔｉｏｎ ｅｘｐｅｒｉｍｅｎｔｓ ｏｎ ｍｅｄｉｕｍ ｃｏｍｐｌｅｘｉｔｙ ｅｎｖｉｒｏｎｍｅｎｔ

进一步，验证分组异步更新方法的有效性． 对比 ＭＡＤ⁃
ＤＰＧ 和 ＭＡＤＤＰＧ⁃ＧＡ，在低复杂度的捕食者⁃猎物环境中，
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ＭＡＤＤＰＧ⁃ＧＡ 对比原始的 ＭＡＤＤＰＧ 性能提升的同时也实现

了更快且更稳定的策略收敛． 在中等复杂度的环境中，分组异

步更新带来的性能提升更加明显．
最后，在两个场景中，同时使用动态时空注意力和分组异

步更新方法的 ＭＡＤＤＰＧ⁃ＳＴＧＡ 均获得了最佳的平均得分．
在低复杂度的场景中，ＭＡＤＤＰＧ⁃ＳＴＧＡ 能够快速收敛到最佳

且平稳的策略，这主要得益于动态时空注意力机制的作用，该
机制使智能体能够有效捕捉和利用其他智能体的行为信息，
优化协作关系． 在中等复杂度的环境中，尽管 ＭＡＤＤＰＧ⁃
ＳＴＧＡ 的学习过程中出现了一定的波动，但相比仅使用动态

时空注意力的方法，分组异步更新策略的引入有效减少了学

习过程中的波动幅度，最终实现了最高的平均得分，并收敛到

相对稳定的策略． 可见，动态时空注意力和分组异步更新方法

的结合对性能提升有显著作用，且二者共同作用的改进效果

远胜于单独使用其中任一方法．

４　 结　 论

本文提出一种结合动态时空注意力机制与分组异步更新

策略的多智能体强化学习框架，该框架通过时间卷积网络

（ＴＣＮ）有效提取智能体行为的序列特征，最终生成的特征不

仅反映时间上的动态变化，还间接蕴含空间关系． 动态注意力

机制不仅促进了智能体间的高效合作学习，还考虑了智能体

在特定时间步长的相对重要性． 分组异步更新策略通过智能

体的分组内同步与组间异步更新，可显著提高学习效率与模

型的稳定性． 实验结果证实，所提方法在复杂多变环境下展现

出优越的协作性能与学习效率，为智能体的动态合作关系建

模提供了新的视角．
未来的工作将从 ３ 个方面进一步拓展与深化：首先，探索

更先进的图神经网络结构以更好地捕捉智能体间的复杂依赖

关系，特别是在大规模多智能体系统中；其次，探索并优化更

合理的分组和重分组策略，以提高多智能体系统在动态环境

中的协作效率，并增强模型的适应能力；最后，研究更为细致

的奖励机制设计，以促进智能体间的公平合作与长期策略一

致性，确保系统整体效益最大化．
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ｎｅｕｒａｌ ｎｅｔｗｏｒｋ⁃ｂａｓｅｄ ｍｕｌｔｉ⁃ａｇｅｎｔ ｓｙｓｔｅｍ ｆｏｒ ｔｒａｆｆｉｃ ｅｎｇｉｎｅｅｒｉｎｇ

２８８２ 　 　 　 　 　 　 小　 型　 微　 型　 计　 算　 机　 系　 统 　 　 　 　 　 　 ２０２５ 年



［Ｊ］ ． ＩＥＥＥ Ｔｒａｎｓａｃｔｉｏｎｓ ｏｎ Ｃｏｇｎｉｔｉｖｅ Ｃｏｍｍｕｎｉｃａｔｉｏｎｓ ａｎｄ Ｎｅｔ⁃
ｗｏｒｋｉｎｇ，２０２３，９（２）：４９４⁃５０６．

［２１］ Ｗｕ Ｚ，Ｐａｎ Ｓ，Ｃｈｅｎ Ｆ，ｅｔ ａｌ． Ａ ｃｏｍｐｒｅｈｅｎｓｉｖｅ ｓｕｒｖｅｙ ｏｎ ｇｒａｐｈ ｎｅｕ⁃
ｒａｌ ｎｅｔｗｏｒｋｓ ［ Ｊ］ ． ＩＥＥＥ Ｔｒａｎｓａｃｔｉｏｎｓ ｏｎ Ｎｅｕｒａｌ Ｎｅｔｗｏｒｋｓ ａｎｄ
Ｌｅａｒｎｉｎｇ Ｓｙｓｔｅｍｓ，２０２０，３２（１）：４⁃２４．

［２２］ Ｚｈｏｕ Ｊ，Ｃｕｉ Ｇ，Ｈｕ Ｓ， ｅｔ ａｌ． Ｇｒａｐｈ ｎｅｕｒａｌ ｎｅｔｗｏｒｋｓ： ａ ｒｅｖｉｅｗ ｏｆ
ｍｅｔｈｏｄｓ ａｎｄ ａｐｐｌｉｃａｔｉｏｎｓ［ Ｊ］ ． ＡＩ Ｏｐｅｎ，２０２０，１：５７⁃８１， ｄｏｉ：１０．
４８５５０ ／ ａｒｘｉｖ． １８１２． ０８４３４．

［２３］ Ｄｉｎｇ Ｓ，Ｄｕ Ｗ，Ｄｉｎｇ Ｌ，ｅｔ ａｌ． Ｌｅａｒｎｉｎｇ ｅｆｆｉｃｉｅｎｔ ａｎｄ ｒｏｂｕｓｔ ｍｕｌｔｉ⁃ａ⁃
ｇｅｎｔ ｃｏｍｍｕｎｉｃａｔｉｏｎ ｖｉａ ｇｒａｐｈ ｉｎｆｏｒｍａｔｉｏｎ ｂｏｔｔｌｅｎｅｃｋ ［Ｃ］ ／ ／ Ｐｒｏ⁃
ｃｅｅｄｉｎｇｓ ｏｆ ｔｈｅ ＡＡＡＩ Ｃｏｎｆｅｒｅｎｃｅ ｏｎ Ａｒｔｉｆｉｃｉａｌ Ｉｎｔｅｌｌｉｇｅｎｃｅ，２０２４：
１７３４６⁃１７３５３．

［２４］ Ｊｉａｎｇ Ｊ，Ｄｕｎ Ｃ，Ｈｕａｎｇ Ｔ，ｅｔ ａｌ． Ｇｒａｐｈ ｃｏｎｖｏｌｕｔｉｏｎａｌ ｒｅｉｎｆｏｒｃｅｍｅｎｔ
ｌｅａｒｎｉｎｇ［Ｊ］ ． ａｒＸｉｖ ｐｒｅｐｒｉｎｔ ａｒＸｉｖ：１８１０． ０９２０２，２０１８．

［２５］ Ｗａｎｇ Ｙ，Ｘｕ Ｔ，Ｎｉｕ Ｘ，ｅｔ ａｌ． ＳＴＭＡＲＬ：ａ ｓｐａｔｉｏ⁃ｔｅｍｐｏｒａｌ ｍｕｌｔｉ⁃ａ⁃
ｇｅｎｔ ｒｅｉｎｆｏｒｃｅｍｅｎｔ ｌｅａｒｎｉｎｇ ａｐｐｒｏａｃｈ ｆｏｒ ｃｏｏｐｅｒａｔｉｖｅ ｔｒａｆｆｉｃ ｌｉｇｈｔ
ｃｏｎｔｒｏｌ［ Ｊ］ ． ＩＥＥＥ Ｔｒａｎｓａｃｔｉｏｎｓ ｏｎ Ｍｏｂｉｌｅ Ｃｏｍｐｕｔｉｎｇ，２０２０，２１
（６）：２２２８⁃２２４２．

［２６］ Ｉｖａｎｏｖｉｃ Ｂ，Ｐａｖｏｎｅ Ｍ． Ｔｈｅ ｔｒａｊｅｃｔｒｏｎ：ｐｒｏｂａｂｉｌｉｓｔｉｃ ｍｕｌｔｉ⁃ａｇｅｎｔ ｔｒａｊ⁃
ｅｃｔｏｒｙ ｍｏｄｅｌｉｎｇ ｗｉｔｈ ｄｙｎａｍｉｃ ｓｐａｔｉｏｔｅｍｐｏｒａｌ ｇｒａｐｈｓ ［ Ｃ］ ／ ／ Ｐｒｏ⁃
ｃｅｅｄｉｎｇｓ ｏｆ ｔｈｅ ＩＥＥＥ ／ ＣＶＦ Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｃｏｎｆｅｒｅｎｃｅ ｏｎ Ｃｏｍｐｕｔｅｒ
Ｖｉｓｉｏｎ，２０１９：２３７５⁃２３８４．

［２７］ Ｋｏｎｄａ Ｖ Ｒ，Ｔｓｉｔｓｉｋｌｉｓ Ｊ Ｎ． Ａｃｔｏｒ⁃ｃｉｔｉｃ ａｇｏｒｉｔｈｍｓ［Ｃ］ ／ ／ Ｐｒｏｃｅｅｄｉｎｇｓ
ｏｆ ｔｈｅ １２ｔｈ Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｃｏｎｆｅｒｅｎｃｅ ｏｎ Ｎｅｕｒａｌ Ｉｎｆｏｒｍａｔｉｏｎ Ｐｒｏ⁃
ｃｅｓｓｉｎｇ Ｓｙｓｔｅｍｓ，１９９９：１００８⁃１０１４．

［２８］ Ｍｎｉｈ Ｖ，Ｂａｄｉａ Ａ Ｐ，Ｍｉｒｚａ Ｍ， ｅｔ ａｌ． Ａｓｙｎｃｈｒｏｎｏｕｓ ｍｅｔｈｏｄｓ ｆｏｒ
ｄｅｅｐ ｒｅｉｎｆｏｒｃｅｍｅｎｔ ｌｅａｒｎｉｎｇ［Ｃ］ ／ ／ Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｃｏｎｆｅｒｅｎｃｅ ｏｎ Ｍａ⁃
ｃｈｉｎｅ Ｌｅａｒｎｉｎｇ，２０１６：１９２８⁃１９３７．

［２９］ Ｈｅｗａｇｅ Ｐ，Ｂｅｈｅｒａ Ａ，Ｔｒｏｖａｔｉ Ｍ，ｅｔ ａｌ． Ｔｅｍｐｏｒａｌ ｃｏｎｖｏｌｕｔｉｏｎａｌ ｎｅｕ⁃
ｒａｌ（ＴＣＮ）ｎｅｔｗｏｒｋ ｆｏｒ ａｎ ｅｆｆｅｃｔｉｖｅ ｗｅａｔｈｅｒ ｆｏｒｅｃａｓｔｉｎｇ ｕｓｉｎｇ ｔｉｍｅ⁃

ｓｅｒｉｅｓ ｄａｔａ ｆｒｏｍ ｔｈｅ ｌｏｃａｌ ｗｅａｔｈｅｒ ｓｔａｔｉｏｎ ［ Ｊ］ ． Ｓｏｆｔ Ｃｏｍｐｕｔｉｎｇ，
２０２０，２４（２１）：１６４５３⁃１６４８２．

［３０］ Ｍａ Ｙ，Ｓｈｅｎ Ｍ，Ｚｈａｎｇ Ｎ，ｅｔ ａｌ． ＯＭ⁃ＴＣＮ：ａ ｄｙｎａｍｉｃ ａｎｄ ａｇｉｌｅ ｏｐ⁃
ｐｏｎｅｎｔ ｍｏｄｅｌｉｎｇ ａｐｐｒｏａｃｈ ｆｏｒ ｃｏｍｐｅｔｉｔｉｖｅ ｇａｍｅｓ［ Ｊ］ ． Ｉｎｆｏｒｍａｔｉｏｎ
Ｓｃｉｅｎｃｅｓ，２０２２，６１５：４０５⁃４１４，ｄｏｉ：１０． １０１６ ／ ｊ． ｉｎｓ． ２０２２． ０８． １０１．

［３１］ Ｚｈａｎｇ Ｙ，Ｇｕ Ｔ， Ｚｈａｎｇ Ｘ． ＭＤＬｄｒｏｉｄ： ａ ＣｈａｉｎＳＧＤ⁃ｒｅｄｕｃｅ ａｐ⁃
ｐｒｏａｃｈ ｔｏ ｍｏｂｉｌｅ ｄｅｅｐ ｌｅａｒｎｉｎｇ ｆｏｒ ｐｅｒｓｏｎａｌ ｍｏｂｉｌｅ ｓｅｎｓｉｎｇ［ Ｊ］ ．
ＩＥＥＥ ／ ＡＣＭ Ｔｒａｎｓａｃｔｉｏｎｓ ｏｎ Ｎｅｔｗｏｒｋｉｎｇ，２０２１，３０（１）：１３４⁃１４７．

［３２］ Ｆａｎ Ｊ，Ｚｈａｎｇ Ｋ，Ｈｕａｎｇ Ｙ，ｅｔ ａｌ． Ｐａｒａｌｌｅｌ ｓｐａｔｉｏ⁃ｔｅｍｐｏｒａｌ ａｔｔｅｎｔｉｏｎ⁃
ｂａｓｅｄ ＴＣＮ ｆｏｒ ｍｕｌｔｉｖａｒｉａｔｅ ｔｉｍｅ ｓｅｒｉｅｓ ｐｒｅｄｉｃｔｉｏｎ［Ｊ］ ． Ｎｅｕｒａｌ Ｃｏｍ⁃
ｐｕｔｉｎｇ ａｎｄ Ａｐｐｌｉｃａｔｉｏｎｓ，２０２３，３５（１８）：１３１０９⁃１３１１８．

［３３］ Ｍｅｙｄａｎｉ Ａ，Ｓｈａｈｉｎｚａｄｅｈ Ｈ，Ｒａｍｅｚａｎｉ Ａ，ｅｔ ａｌ． Ｃｏｍｐｒｅｈｅｎｓｉｖｅ ｒｅ⁃
ｖｉｅｗ ｏｆ ａｒｔｉｆｉｃｉａｌ ｉｎｔｅｌｌｉｇｅｎｃｅ ａｐｐｌｉｃａｔｉｏｎｓ ｉｎ ｓｍａｒｔ ｇｒｉｄ ｏｐｅｒａｔｉｏｎｓ
［Ｃ］ ／ ／ ９ｔｈ Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｃｏｎｆｅｒｅｎｃｅ ｏｎ Ｔｅｃｈｎｏｌｏｇｙ ａｎｄ Ｅｎｅｒｇｙ
Ｍａｎａｇｅｍｅｎｔ，２０２４：１⁃１３．

［３４］ Ｄｉｂａｎｇｏｙｅ Ｊ Ｓ，Ａｍａｔｏ Ｃ，Ｂｕｆｆｅｔ Ｏ，ｅｔ ａｌ． Ｏｐｔｉｍａｌｌｙ ｓｏｌｖｉｎｇ Ｄｅｃ⁃
ＰＯＭＤＰｓ ａｓ ｃｏｎｔｉｎｕｏｕｓ⁃ｓｔａｔｅ ＭＤＰｓ［Ｊ］ ． Ｊｏｕｒｎａｌ ｏｆ Ａｒｔｉｆｉｃｉａｌ Ｉｎｔｅｌ⁃
ｌｉｇｅｎｃｅ Ｒｅｓｅａｒｃｈ，２０１６，５５：４４３⁃４９７，ｄｏｉ：１０． １６１３ ／ ｊａｉｒ． ４６２３．

［３５］ Ｌｕｋｅ Ｓ，Ｃｉｏｆｆｉ Ｒｅｖｉｌｌａ Ｃ，Ｐａｎａｉｔ Ｌ，ｅｔ ａｌ． Ｍａｓｏｎ：ａ ｍｕｌｔｉａｇｅｎｔ ｓｉｍｕ⁃
ｌａｔｉｏｎ ｅｎｖｉｒｏｎｍｅｎｔ［Ｊ］ ． Ｓｉｍｕｌａｔｉｏｎ，２００５，８１（７）：５１７⁃５２７．

［３６］ Ｍａ Ｙ，Ｓｈｅｎ Ｍ，Ｚｈａｏ Ｙ，ｅｔ ａｌ． Ｏｐｐｏｎｅｎｔ ｐｏｒｔｒａｉｔ ｆｏｒ ｍｕｌｔｉａｇｅｎｔ ｒｅ⁃
ｉｎｆｏｒｃｅｍｅｎｔ ｌｅａｒｎｉｎｇ ｉｎ ｃｏｍｐｅｔｉｔｉｖｅ ｅｎｖｉｒｏｎｍｅｎｔ［ Ｊ］ ． Ｉｎｔｅｒｎａｔｉｏｎａｌ
Ｊｏｕｒｎａｌ ｏｆ Ｉｎｔｅｌｌｉｇｅｎｔ Ｓｙｓｔｅｍｓ，２０２１，３６（１２）：７４６１⁃７４７４．

［３７］ Ｍｏｒｄａｔｃｈ Ｉ，Ａｂｂｅｅｌ Ｐ． Ｅｍｅｒｇｅｎｃｅ ｏｆ ｇｒｏｕｎｄｅｄ ｃｏｍｐｏｓｉｔｉｏｎａｌ ｌａｎ⁃
ｇｕａｇｅ ｉｎ ｍｕｌｔｉ⁃ａｇｅｎｔ ｐｏｐｕｌａｔｉｏｎｓ［Ｃ］ ／ ／ Ｐｒｏｃｅｅｄｉｎｇｓ ｏｆ ｔｈｅ ＡＡＡＩ
Ｃｏｎｆｅｒｅｎｃｅ ｏｎ Ａｒｔｉｆｉｃｉａｌ Ｉｎｔｅｌｌｉｇｅｎｃｅ， ２０１８， ｄｏｉ： １０． １６０９ ／ ａａａｉ．
ｖ３２ｉ１． １１４９２．

［３８］ Ｉｑｂａｌ Ｓ，Ｓｈａ Ｆ． Ａｃｔｏｒ⁃ａｔｔｅｎｔｉｏｎ⁃ｃｒｉｔｉｃ ｆｏｒ ｍｕｌｔｉ⁃ａｇｅｎｔ ｒｅｉｎｆｏｒｃｅｍｅｎｔ
ｌｅａｒｎｉｎｇ ［ Ｃ ］ ／ ／ Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｃｏｎｆｅｒｅｎｃｅ ｏｎ Ｍａｃｈｉｎｅ Ｌｅａｒｎｉｎｇ，
２０１９：２９６１⁃２９７０．

３８８２１２ 期　 　 　 　 　 　 　 陈　 涛 等：时空注意力驱动的分组异步多智能体强化学习框架 　 　


