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SLAW-YOLOVS :a Method for Dense Pedestrian Detection

CHEN Ruyi, YAN He, WANG Yan,SHEN Qile
(School of Artificial Intelligence ,Chongging University of Technology,Chongqing 401135, China)

Abstract: To address the problem of missed detections and false alarms in dense scene pedestrian detection with YOLOVS, we intro-
duce a spatial channel reconstruction convolution module ( SCConv) with strong feature extraction ability and a separable large kernel
attention mechanism (LSKA) to improve the main body network. We also introduce channel attention modules (EMA) and adaptive
spatial feature fusion modules ( ASFF) in the neck network and detection head , respectively, to enhance multi-channel contextual infor-
mation and target scale-invariant performance. We propose a new Wise-MPDIoU boundary loss function, thereby constructing a new
dense pedestrian detection method: SLAW-YOLOVS. The experimental results show that on the PASCAL VOC2012 dataset, mnAP@
0.5 was improved by 4. 4% ,and mAP@0. 5: (.95 was improved by 4. 7% ;on the WiderPerson dataset, mAP@ 0. 5 was improved
by 1. 5% ,and mAP@0. 5: 0.95 was improved by 1. 9% ,effectively eliminating the problem of missed detections and false alarms in
dense scene pedestrian detection.

Keywords : pedestrian detection ; YOLOVS ; multi-scale feature fusion;attention mechanisms ;loss function
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Table 2 Comparative experiments of different object detection

algorithms in the WiderPerson dataset

B APy s APy s.995 GFLOPs FPS
SSD 68. 4% - 87.7 59
YOLOv3 82.0% 47.6% 117.7 54.6
YOLOv4 84.9%  51.9% 17.7 65
YOLOVS5s 87.2%  64.6% 13.7 64.6
YOLOvV7 89.2%  64.3% 71.3 31.7
YOLOvVS8s 88.6% 67.8%  28.4 64.5

YOLOv8n( baseline )
SLAW-YOLOVS8n

87.8%  63% 8.1 55.3
89.3%  64.9% 11.8 41.2
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Fig.7 Comparison of YOLOv8n and SLAW-
YOLOVS indicators
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Fig.8 Comparison of pedestrian detection results in severe occlusion
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Fig.9 Comparison of pedestrian detection results in crowded times
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Fig. 10 Comparison of pedestrian detection results in a dim background
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