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摘　 要： 针对 ＹＯＬＯｖ８ 密集场景行人检测易出现漏检、误检现象，通过引入具有强特征提取能力的空间通道重建卷积模块

（ＳＣＣｏｎｖ）和可分离大核注意力机制（ＬＳＫＡ） 对其主干网络进行改进；分别在其颈部网络和检测头引入通道注意力模块

（ＥＭＡ）和自适应空间特征融合模块（ＡＳＦＦ），有效增强多通道上下文信息和目标尺度不变性能；提出一种新的 Ｗｉｓｅ⁃ＭＰＤＩｏＵ
边界损失函数，从而构建出一种新的密集行人检测方法：ＳＬＡＷ⁃ＹＯＬＯｖ８． 对比实验结果表明，在 ＰＡＳＣＡＬ ＶＯＣ２０１２ 数据集上，
ｍＡＰ＠０􀆰 ５ 提高了 ４􀆰 ４％ ，ｍＡＰ＠０􀆰 ５∶ ０􀆰 ９５ 提高了 ４􀆰 ７％ ；在 ＷｉｄｅｒＰｅｒｓｏｎ 数据集上 ｍＡＰ＠０􀆰 ５ 提升了 １􀆰 ５％ ，ｍＡＰ＠ ０􀆰 ５∶ ０􀆰 ９５
提高了 １􀆰 ９％ ，有效消除了密集场景行人检测的漏检、误检现象．
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０　 引　 言

密集行人检测受相互遮挡及光照变化的影响，漏检、误检

现象突出，制约了行人流量智能统计在智慧城市管理中的广

泛应用．
ＳＳＤ［１］是最早出现的适应密集目标的检测器，但其检测

准确率较低，随后陆续出现的 ＹＯＬＯ［２］系列检测器，均在提升

检测准 确 率 和 减 低 模 型 参 数 量 方 面 不 断 改 进． 其 中，
ＹＯＬＯｖ３［３］采用更深的卷积层和多尺度检测策略，在提升对

小目标检测精度的同时，具有较高的推理速度，但其每秒浮点

计算量大且检测精度有待提高；相比 ＹＯＬＯｖ３，ＹＯＬＯｖ４［４］ 引

入 ＣＩＯＵ 损失函数、空间注意力 （ Ｓｐａｔｉａｌ Ａｔｔｅｎｔｉｏｎ Ｍｏｄｕｌｅ，
ＳＡＭ）模块和 ＰＡＮｅｔ 模块的改进方法，检测精度略有提高的

同时，浮点数计算量明显降低；ＹＯＬＯｖ５［５］ 引入模型剪枝、数
据增强、自动缩放多尺度检测等改进机制，进一步提高检测精

度和降低了浮点数计算量；为进一步提升检测精度，２０２２ 年

在 ＹＯＬＯｖ５ 模型的基础上，ＹＯＬＯｖ７［６］ 增加了添加了空间金

字塔池化（Ｓｐａｔｉａｌ Ｐｙｒａｍｉｄ Ｐｏｏｌｉｎｇ，ＳＰＰ）模块和 ＳＡＭ 模块，但
其浮 点 数 计 算 量 明 显 增 加、 帧 率 明 显 下 降； ２０２３ 年，
ＹＯＬＯｖ８［７］引入梯度信息更丰富的 Ｃ２ｆ 结构，采用解耦头检

测结构，并优化模型通道分配策略，显著提升了推理速度和计

算效率．
ＹＯＬＯ 系列的不断优化提升了对密集行人检测的适应能

力，但当前方法仍存在显著不足，模型对复杂场景中特征细节

的捕捉能力不足，导致漏检和误检率偏高． 为促使 ＹＯＬＯ 系

列在密集行人检测任务中取得更出色的表现，国内外的学者

已提出各种的改进方法． 王［８］ 等人在 ＹＯＬＯｖ４ 的基础上将像

素块注意力机制模块 （Ｃｏｎｖｏｌｕｔｉｏｎａｌ⁃Ｐｉｘｅｌ Ｂｌｏｃｋ Ａｔｔｅｎｔｉｏｎ
Ｍｏｄｕｌｅ，ＣＢＡＭ⁃ＰＩＸ）嵌入主干网络 ＣＳＰＤａｒｋｎｅｔ５３，利用级联

思想对特征融合网络进行改进，强化模型在空间和通道维度



上提取像素信息的能力． 姜［９］ 等人在 ＹＯＬＯｖ５ 的基础上引入

ＳｉｍＡＭ 无参注意力机制，同时增设信息融合模块，以挖掘更

丰富的特征信息；徐［１０］等人在 ＹＯＬＯｖ７ 的基础上通过引入转

置卷积以及优化后的 Ｒｅｐ⁃ＥＬＡＮ⁃Ｗ 模块，显著提升了模型对

中低维特征图中小目标特征信息的利用效率；王［１１］ 等提出了

轻量级的密集行人检测算法 ＭＥＲ⁃ＹＯＬＯ，在 ＹＯＬＯｖ８ 架构

中替换了主干网络，引入注意力机制并且对损失函数进行优

化；而高［１２］等则基于 ＹＯＬＯｖ８，采用可变形卷积对主干网络

进行优化，同时设计了遮挡感知注意力机制和动态解耦头，使
多尺度特征的检测效果得以提升． 这些改进方法在针对遮挡

与小目标检测方面虽有一定成效，但面对复杂密集场景，模型

对目标细节特征的捕捉能力依然不足，漏检问题仍然明显． 因
此，如何在 ＹＯＬＯｖ８ 的基础上进一步增强对行人细节特征的

提取能力，同时兼顾检测精度与计算效率，依然是密集行人检

测领域需解决的关键问题． 为解决上述问题，本文提出一种基

于 ＹＯＬＯｖ８ 改进的密集行人检测算法 ＳＬＡＷ⁃ＹＯＬＯｖ８，旨在

提升复杂场景中的检测性能，同时保持较高计算效率． 本文的

改进点包括：
１）在 Ｃ２ｆ 模块中加入一种融合空间通道重建卷积 ＳＣＣｏ⁃

ｎｖ［１３］组成新的 Ｃ２ｆ＿ＳＣＣｏｎｖ 模块，通过提高目标细节特征提

取能力显著提升了模型的检测性能；
２）引入 ＬＳＫＡ 大核注意力机制［１４］ ，增强目标细节多尺度

特征融合能力；
３）引入自适应空间特征融合方法 ＡＳＦＦ［１５］对特征融合网

络进行改进，对特征图进行动态加权融合，全面捕捉多尺度信

息，实现更准确的定位；
４）引入 ＥＭＡ［１６］ 注意力机制，提升模型对行人背景的识

别能力，缓解遮挡对检测的影响；
５）训练时采用高效的 Ｗｉｓｅ⁃ＭＰＤＩｏＵ 作为边界框损失函

数，增加对低质量锚框的聚焦能力，加快模型收敛速度，进一

步提高检测精度．

１　 ＳＬＡＷ⁃ＹＯＬＯｖ８ 算法网络模型构建

１􀆰 １　 ＹＯＬＯ８ 模型

ＹＯＬＯｖ８ 是基于 ＹＯＬＯｖ５ 由同一团队所提出的单阶段

目标检测框架． 它继承了 ＹＯＬＯ 系列模型在高效性和实时性

方面的优势，在目标检测、图像分类以及语义分割等任务中得

到广泛应用． 与传统锚框机制不同，ＹＯＬＯｖ８ 通过自动学习边

界框提升了模型的灵活性． 同时，ＹＯＬＯｖ８ 进一步优化了参数

量和计算量，并提供了 ５ 个版本分别为 ＹＯＬＯｖ８ｎ、ＹＯＬＯｖ８ｓ、
ＹＯＬＯｖ８ｍ、ＹＯＬＯｖ８ｌ 和 ＹＯＬＯｖ８ｘ． 通过对模型速度与大小

的综合考量，本文选用 ＹＯＬＯｖ８ｎ 来开展行人检测任务．
ＹＯＬＯｖ８ 的网络结构包括了 ４ 个部分，分别是输入模块

（Ｉｎｐｕｔ）、主干网络（Ｂａｃｋｂｏｎｅ）、颈部网络（Ｎｅｃｋ）以及检测头

（Ｈｅａｄ） ． 其中，Ｉｎｐｕｔ 的作用是进行数据输入；Ｂａｃｋｂｏｎｅ 负责

提取不同尺度的图像特征；Ｎｅｃｋ 主要承担融合多尺度特征的

任务；而 Ｈｅａｄ 则用于生成最终的预测结果．
在输入端，ＹＯＬＯｖ８ 引入了 Ｍｏｓａｉｃ 数据增强方法． 这种

方法通过将多张图片按照一定比例进行拼接来完成预处理，
进而提升检测性能，增强模型的鲁棒性． ＹＯＬＯｖ８ 的主干网络

和颈部网络都经过了重新设计，主干网络引入了更为强大的

ＣＳＰ（Ｃｒｏｓｓ Ｓｔａｇｅ Ｐａｒｔｉａｌ Ｎｅｔｗｏｒｋ，ＣＳＰ）结构，在减少计算量的

同时，还提高了特征融合效果． 用梯度流更为丰富的 Ｃ２ｆ 结

构对 ＹＯＬＯｖ５ 的 Ｃ３ 结构进行替换，显著提升了特征提取能

力，从而增强了模型对不同尺度目标的检测能力．
在 Ｎｅｃｋ 部分，ＹＯＬＯｖ８ 采用了 ＰＡＦＰＮ 特征融合结构． 该

方法通过将深层特征的语义信息自上而下传递到浅层特征，
同时把浅层特征的位置信息传递到深层特征，并且去除了 １ ×
１ 卷积的降采样层． 在 Ｈｅａｄ 部分，ＹＯＬＯｖ８ 把 ＹＯＬＯｖ５ 的 Ａｎ⁃
ｃｈｏｒ⁃Ｂａｓｅｄ 机制替换为 Ａｎｃｈｏｒ⁃Ｆｒｅｅ 机制，通过关键点或中心

点结合边界信息的方式来表示物体，这种方式更适用于密集场

景检测． 同时，采用主流的解耦头结构 Ｄｅｃｏｕｐｌｅｄ⁃Ｈｅａｄ，将分类

头与检测头分开，进一步提升了模型的精度与收敛速度．
１􀆰 ２　 Ｂａｃｋｂｏｎｅ 引入 ＳＣＣｏｎｖ 卷积

在密集行人的检测中，行人之间由于互相遮挡及环境变

化，目标的特征会出现大量干扰信息． 卷积运算在各种视觉任

务中表现优异，但容易对特征信息捕捉不准确，影响模型对目

标特征的有效提取． Ｃ２ｆ 模块是 ＹＯＬＯｖ８ 主干网络的基本构

成单元，要负责特征提取与下采样，为了进一步提升对目标特

征的捕捉能力，并减少因特征提取不足导致的检测错误，本文

将 ＳＣＣｏｎｖ 卷积融入 Ｃ２ｆ 模块构成一个新的卷积模块 Ｃ２ｆ＿
ＳＣＣｏｎｖ，空间重建单元（Ｓｐａｔｉａｌ Ｒｅｃｏｎｓｔｒｕｃｔｉｏｎ Ｕｎｉｔ，ＳＲＵ）和

通道重建单元（Ｃｈａｎｎｅｌ Ｒｅｃｏｎｓｔｒｕｃｔｉｏｎ Ｕｎｉｔ，ＣＲＵ）组合构建

出 ＳＣＣｏｎｖ 模块，如图 １ 所示． 其中，ＳＲＵ 单元会依据权重分

配来分离和重构输入特征，达到既能抑制空间层面的冗余信

息，还能增强特征的表征能力的目的． 再通过 ＣＲＵ 运算执行

分裂、变换以及融合等操作，进一步降低通道维度的特征冗

余，从整体上提升模型对目标的特征提取成效．

图 １　 ＳＣＣｏｎｖ 模块

Ｆｉｇ． １　 ＳＣＣｏｎｖ ｍｏｄｕｌｅ

　 　 如图 ２ 所示，输入特征首先经过一个 Ｃｏｎｖ 卷积块进行特

征提取，然后沿通道维度分离为两条分支． 其中一条分支通过

ＳＣＣｏｎｖ 模块提取特征后，与另一条分支的特征进行跳层连

接，从而实现跨尺度的卷积融合． 最终，这些特征通过一个

Ｃｏｎｖ 卷积块生成 Ｃ２ｆ＿ＳＣＣｏｎｖ 残差单元的输出特征． 进一步

用 Ｃ２ｆ＿ＳＣＣｏｎｖ 模块替换整个网络模型中的所有 Ｃ２ｆ 模块．

图 ２　 Ｃ２ｆ＿ＳＣＣｏｎｖ 结构图

Ｆｉｇ． ２　 Ｃ２ｆ＿ＳＣＣｏｎｖ ｓｔｒｕｃｔｕｒｅ ｄｉａｇｒａｍ

１􀆰 ３　 ＳＰＰＦ 引入可分离大卷积核注意力 ＬＳＫＡ
ＹＯＬＯｖ８ 中的 ＳＰＰＦ 结构是将 ＳＰＰ（Ｓｐａｔｉａｌ Ｐｙｒａｍｉｄ Ｐｏｏ⁃

ｌｉｎｇ，ＳＰＰ）和感知大内核卷积（ＵｎｉＲｅｐＬＫ）相结合，通过对输

入特征图进行不同尺度的池化操作，实现各特征图之间的相

互融合，进而提升模型的特征提取能力． 由于密集行人检测背
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景复杂，为了提升模型对复杂背景的应对能力，在 ＳＰＰＦ 层中

引入 ＬＳＫＡ 可分离大卷积核注意力，更深层次捕捉目标的局

部上下文信息，构成 ＳＰＰＦ⁃ＬＳＫＡ 模块以替代 ＹＯＬＯｖ８ 中 ＳＰ⁃
ＰＦ，如图 ３ 所示．

图 ３　 ＬＳＫＡ 及 ＳＰＰＦ＿ＬＳＫＡ 模块结构图

Ｆｉｇ． ３　 Ｓｔｒｕｃｔｕｒｅ ｄｉａｇｒａｍ ｏｆ ＬＳＫＡ ａｎｄ ＳＰＰＦ＿ＬＳＫＡ ｍｏｄｕｌｅｓ

　 　 ＬＳＫＡ 模块由标准深度卷积（ＤＷ⁃Ｃｏｎｖ）、扩张深度卷积

（ＤＷ⁃Ｄ⁃Ｃｏｎｖ）以及 １ × １ 通道卷积三部分组成，其卷积操作

分为以下 ３ 步：１）把输入特征图和 Ｋ × Ｋ 卷积的核进行卷积

拆分为两部分的二维卷积；２）将二维的深度与深度扩张卷积

核继续拆分成一维的水平卷积核与垂直卷积核；３）将上述两

步的 ３ 个卷积核级联起来．
１􀆰 ４　 Ｈｅａｄ 引入自适应融合 ＡＳＦＦ

ＹＯＬＯｖ８ 的颈部采用改进的 ＰＡＮ⁃ＦＰＮ（路径聚合网络⁃
特征金字塔网络）结构，优化了上采样阶段的特征融合效率，
但多尺度特征融合可能导致信息冲突和不一致性． 复杂场景

下的密集行人检测，待检测的行人会因为遮挡和光线等因素

存在模糊轮廓，尺度差异和部分特征缺失的情况． 为解决这一

问题，在检测头引入自适应空间特征融合（Ａｄａｐｔｉｖｅｌｙ Ｓｐａｔｉａｌ
Ｆｅａｔｕｒｅ Ｆｕｓｉｏｎ，ＡＳＦＦ）策略，提升特征的尺度不变性和融合效

果． ＡＳＦＦ 结构如图 ４ 所示． 在此结构里，Ｌｅｖｅｌ １、Ｌｅｖｅｌ ２ 和

Ｌｅｖｅｌ ３ 代表特征金字塔中不同层级的特征，并且不同层级有

不同的分辨率，经过特征融合得到 ＡＳＦＦ⁃１、ＡＳＦＦ⁃２ 和 ＡＳＦＦ⁃
３ 这 ３ 个 ＡＳＦＦ 层．

图 ４　 ＡＳＦＦ 模块结构图

Ｆｉｇ． ４　 ＡＳＦＦ ｍｏｄｕｌｅ ｓｔｒｕｃｔｕｒｅ ｄｉａｇｒａｍ

　 　 ＡＳＦＦ 策略通过特征尺度归一化与自适应权重融合两个

步骤实现多尺度特征整合，针对不同层级特征分别进行上采样

和下采样操作． 其中上采样使用 １ × １ 的卷积对特征通道进行

压缩，使其与目标层级通道维度一致，再利用插值算法提升特

征图空间分辨率，而比的下采样则使用步幅为 ２ 的 ３ × ３ 的卷

积实现特征图尺寸减半与通道维度调整． 该机制通过参数化方

式统一多尺度特征的维度空间． 比的下采样在比的下采样的基

础上增加步幅为 ２ 的最大池化层，同样也使用 ３ ×３ 的卷积．
最终的特征融合结果经过特征缩放后的每个特征图与其

对应的权重参数矩阵相乘，对应元素值相加的方式得到，计算

过程为：
ｙｌｉｊ ＝ αｌ

ｉｊ·ｘ１→ｌ
ｉｊ ＋ βｌ

ｉｊ·ｘ２→ｌ
ｉｊ ＋ γｌ

ｉｊ·ｘ３→ｌ
ｉｊ （１）

其中，ｘｎ→ｌ
ｉｊ 表示从 ｎ 层映射到到 ｌ 层在（ ｉ，ｊ）位置上的特征向

量，αｌ
ｉｊ，βｌ

ｉｊ，γｌ
ｉｊ∈［０，１］为可学习参数，分别为在（ ｉ，ｊ）位置上

α，β，γ 映射在 ｌ 层上的特征权重值，满足下列关系：

αｌ
ｉｊ ＝

ｅλ
ｌ
ａｉｊ

ｅλｌａｉｊ ＋ ｅλ
ｌ
βｉｊ ＋ ｅλ

ｌ
γｉｊ

（２）

αｌ
ｉｊ ＋ βｌ

ｉｊ ＋ γｌ
ｉｊ ＝ １ （３）

上式中对ｘ１→ｌ，ｘ２→ｌ，ｘ３→ｌ进行特征缩放操作后的 ３ 个特征

图层使用 １ × １ 的卷积计算得到λｌ
ａｉｊ，λ

ｌ
βｉｊ，λ

ｌ
γｉｊ ． 经过上述操作，

利用 ＡＳＦＦ 结构增强各个层级特征图上利于行人检测的语义

信息，让不同尺度的特征达到更好的融合效果．
１􀆰 ５　 Ｎｅｃｋ 引入注意力机制模块 ＥＭＡ

注意力机制可以对局部关键信息有效抓取，使模型能够

把重点放在检测目标的核心特征上，在计算机视觉领域已被

广泛应用． 在颈部网络中引入了一种高效多尺度注意力

（ＥＭＡ）模块，此模块运用分组结构，无需进行降维就能完成

特征处理． ＥＭＡ 注意力机制采用通道维度重构策略，将部分

特征通道映射至批处理维度，并通过多分支子特征划分，实现

空间语义信息在跨组特征间的均衡化分布． 借助特征分组和

多尺度设计，ＥＭＡ 模块成功建立起短期与长期的依赖关系．
该模块极大地提升了检测器的性能，还保留各通道的信息的

同时有效降低了计算成本，ＥＭＡ 注意力模块如图 ５ 所示．

图 ５　 ＥＭＡ 注意力模块

Ｆｉｇ． ５　 ＥＭＡ ａｔｔｅｎｔｉｏｎ ｍｏｄｕｌｅ

　 　 ＥＭＡ 注意力采用并行结构，将输入特征图按通道维度分

为 Ｇ 个子特征，包含两条 １ × １ 卷积和一条 ３ × ３ 卷积分支．
１ × １分支通过全局平均池化和 Ｓｉｇｍｏｉｄ 函数提取二维特征分

布，３ × ３ 分支捕获多尺度特征并生成新特征图． 两分支特征

通过平均池化编码后，利用 Ｓｏｆｔｍａｘ 归一化生成新特征，最后

通过矩阵乘法与原特征融合，得到包含多尺度空间信息和精

确位置信息的注意力图，实现跨分支信息交互并增强目标特

征权重，输出与输入同维度的特征图． 把 ＥＭＡ 注意力模块放

入 ＹＯＬＯｖ８ 网络的 ｎｅｃｋ 结构中，有利于增强网络通道维度上
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的全局上下文信息，从而提升模型对行人背景特征的识别能

力，对严重遮挡的行人检测有更好的性能提升．
１􀆰 ６　 损失函数的改进

ＹＯＬＯｖ８ 网络依赖于边界框回归 （ ｂｏｕｎｄａｒｙ ｂｏｕｎｄｉｎｇ，
ＢＢＲ）模块确定目标位置． 损失函数 ＩｏＵ 是 ＢＢＲ 的重要组成

部分，是计算一个预测值与其真实值之间的损失的指标，以此

衡量模型的准确性． 通过合理设计损失函数，算法能够在训练

过程中逐步优化模型性能从而提高检测精度，其中 ＹＯＬＯｖ８
网络中采用了 ＣＩｏＵ［１７］ ，计算公式如下：

ＩｏＵ ＝ Ｂｐｒｅｄ∩Ｂｇｔ

Ｂｐｒｅｄ∪Ｂｇｔ （４）

ＣＩｏＵ ＝ ＩｏＵ － ρ２ Ｂｐｒｅｄ，Ｂｇｔ( )

ｃ２ ＋ αυ( ) （５）

其 中， α ＝ υ
１ － ＩｏＵ( ) ＋ υ， 作 为 平 衡 参 数， υ ＝

４ × （ａｒｃｔａｎ
ｗＧ

ｈＧ
－ ａｒｃｔａｎ

ｗＧ

ｈＧ
）

２

π２ ， 作 为 修 正 因 子， ｗＧ，ｈＧ( )和

ｗＰ，ｈＰ( )分别为目标框和预测框的宽高，ρ Ｂｐｒｅｄ，Ｂｇｔ( )为预测

框和真实框中心点的距离，ｃ 为目标对象最小外接矩形的对

角线长度．
然而，ＣＩｏＵ 中整合的长宽比约束项存在潜在局限性，它

通过参数化建模预测框与真实框的宽高比差异，会让极端

ＩｏＵ 区间样本的回归优化过程表现出显著偏差． ＭＰＤＩｏＵ［１８］

是一种改进算法，通过直接针对预测框与真实框的左上角、右

下角对应点间距离进行最小化处理，在边界框重叠还是分离

的复杂场景下，都能展现出更好的适应性，有效加快模型的收

敛速度，提升训练效率．
ＬＭＰＤＩｏＵ ＝ １ －ＭＰＤＩｏＵ （６）

ＭＰＤＩｏＵ ＝ ＩｏＵ －
ρ２ Ｐｐｒｅｄ

１ ，Ｐｇｔ
１( )

ｗ２ ＋ ｈ２ －
ρ２ Ｐｐｒｅｄ

２ ，Ｐｇｔ
２( )

ｗ２ ＋ ｈ２ （７）

其中，ρ２ Ｐｐｒｅｄ
１ ，Ｐｇｔ

１( )是计算预测框从左下角到右下角这两点之

间的距离，ρ２ Ｐｐｒｅｄ
２ ，Ｐｇｔ

２( )是计算真实框从左下角到右下角这两

点之间的距离．
本文引入动态非单调的聚焦机制 Ｗｉｓｅ⁃ＩｏＵ［１９］ ，基于

ＷｉｏＵ 的思想设计 Ｗｉｓｅ⁃ＭＰＤＩｏＵ，计算公式如下：

ＬＷｉｓｅ － ＭＰＤＩｏＵ ＝ ＲＷＩｏＵＬＭＰＤＩｏＵ （８）

ＲＷＩｏＵ ＝ ｅｘｐ
ｘ － ｘｇｔ( )２ ＋ ｙ － ｙｇｔ( )２

Ｗｇ
２ ＋ Ｈｇ

２( )∗
æ
è
ç

ö
ø
÷ （９）

其中，ｘ 和 ｙ 为锚框的中心点坐标，ｘｇｔ和ｙｇｔ表示目标框的中心

点坐标，Ｗｇ和Ｈｇ表示最小外接矩形的宽和高，∗表示将Ｗｇ、
Ｈｇ从计算图中分离，作用是为了防止ＲＷＩｏＵ产生阻碍收敛的梯

度，该改进损失函数 Ｗｉｓｅ⁃ＭＰＤＩｏＵ 在关注高质量锚框的基础

上增加了对低置信度目标的关注度，提升了模型处理困难样

本的能力．
１􀆰 ７　 ＳＬＡＷ⁃ＹＯＬＯｖ８

密集人群图像往往背景复杂、图像分辨率高且小目标人

群多，原始 ＹＯＬＯｖ８ 算法提取到的目标行人信息少，模型易

出现漏检的情况，上文对ＹＯＬＯｖ８算法进行５个部分改进：

图 ６　 ＳＬＡＷ⁃ＹＯＬＯＶ８ 网络结构图

Ｆｉｇ． ６　 ＳＬＡＷ⁃ＹＯＬＯＶ８ ｎｅｔｗｏｒｋ ｓｔｒｕｃｔｕｒｅ ｄｉａｇｒａｍ

设计 Ｃ２ｆ＿ＳＣＣｏｎｖ 结构替换 Ｃ２ｆ 结构、设计 ＳＰＰＦ＿ＬＳＫＡ 结构

替换 ＳＰＰＦ 结构、利用自适应空间特征融合方法改进检测头、
增加注意力机制和改进损失函数．

最终改进后的 ＳＬＡＷ⁃ＹＯＬＯｖ８ 如图 ６ 所示 􀆰
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２　 实验设计与结果分析

２􀆰 １　 数据集

在消融实验中，本文选用 ＰＡＳＣＡＬ ＶＯＣ２０１２ 数据集作

为数据基础． 该数据集含有 １１Ｋ 张训练图像，共计 ２０ 个类

别，是计算机视觉领域广泛采用且被公认的标准数据集格式．
为了全方位评估改进算法的有效性，本文还运用公开的

ＷｉｄｅｒＰｅｒｓｏｎ 密集场景行人数据集开展对比实验． 这个数据集

包含 １３３８２ 张图像，大约 ４０ 万个存在不同遮挡程度的行人实

例，其中训练集有 ８０００ 张，验证集有 １０００ 张，测试集有 ４３８２
张，涵盖行人、骑车人、人群等 ５ 个类别． 而本文实验仅选取

行人类别的数据用于测试．
在数据预处理环节，首先把图像随机裁剪成 ６４０ × ６４０ 像

素的子图像，接着运用 Ｍｏｓａｉｃ 方法进行增强，即随机挑选 ９
张图片做随机排列与拼接，增加数据的多样性，提供更丰富的

上下文信息． Ｍｏｓａｉｃ 数据增强还能间接增大 Ｂａｔｃｈｓｉｚｅ，进而

提升模型的鲁棒性和泛化能力．
２􀆰 ２　 实验环境和参数

本文实验基于 Ｗｉｎｄｏｗｓ １１ 操作系统，实验采用 ＮＶＩＤＩＡ
ＧｅＦｏｒｃｅ ＲＴＸ３０９０ ２４Ｇ 作为 ＧＰＵ，实验环境为 Ｐｙｔｈｏｎ３􀆰 ８、
ＣＵＤＡ１１􀆰 ７ 及 Ｐｙｔｏｒｃｈ１􀆰 １２． 实验设置基本采用 ＹＯＬＯｖ８ 官方

推荐的参数，设置如下：训练轮数为 ３００ ｅｐｏｃｈｓ 以确保收敛；
ｂａｃｔｈｓｉｚｅ 设置为 ４８，输入图片统一尺寸为 ６４０ × ６４０，为了避

免消融实验误差和节约模型训练时间，将初始学习率设置为

０􀆰 ０１，将随机种子和数据增强均设置为 １，并且选用随机梯度

下降策略（ＳＧＤ）对网络参数加以优化．
２􀆰 ３　 评价指标

本文选取精确度 （ ｐｒｅｃｉｓｉｏｎ， Ｐｒｅｃｉｓｉｏｎ ）， 召回率 （ ｒｅｃａｌｌ，
Ｒｅｃａｌｌ）、和、ｍＡＰ＠ ０􀆰 ５（ｍｅａｎ ａｖｅｒａｇｅ ｐｒｅｃｉｓｉｏｎ，ｍＡＰ）、ｍＡＰ＠

０􀆰 ５∶ ０􀆰 ９５、模型计算量（Ｇｉｇａ Ｆｌｏａｔｉｎｇ⁃ｐｏｉｎｔ Ｏｐｅｒａｔｉｏｎｓ Ｐｅｒｓｅｃ⁃
ｏｎｄ，ＧＦＬＯＰｓ）和每秒检测图片数量 （ ｆｒａｍｅｓ ｐｅｒｓｅｃｏｎｄ，ＦＰＳ）
等评价指标来对本文改进的算法进行综合评价，其公式如公

式（１０） ～公式（１３）所示：

Ｐｒｅｃｉｓｉｏｎ ＝ ＴＰ
ＴＰ ＋ ＦＰ （１０）

Ｒｅｃａｌｌ ＝
ＴＰ

ＴＰ ＋ ＦＮ （１１）

ＡＰ ＝ ∫１
０
Ｐ Ｒ( )ｄＲ （１２）

ｍＡＰ ＝ １
ｎ ∑

ｎ

ｉ ＝ １∫
１

０
Ｐ Ｒ( )ｄＲ （１３）

式中，ＴＰ 为预测正确的样本、ＦＰ 为预测错误的样本、ＦＮ
为漏检的样本；平均精度（Ａｖｅｒａｇｅ Ｐｒｅｃｉｓｉｏｎ，ＡＰ）用以衡量模

型在不同置信度阈值下的性能，其中 ｍＡＰ＠ ０􀆰 ５，代表的是

ＩＯＵ 为 ０􀆰 ５ 时，各类别 ｍＡＰ 的平均值．
２􀆰 ４　 消融实验

为了评估本文提出的改进方法的实际效果，分别对

ＹＯＬＯｖ８ｎ 的主干网络、Ｎｅｃｋ 端、检测头和损失函数进行了改

进． 原模型与改进后的模型在相同的实验平台上进行测试，并
优化调整了相关参数． 为了验证各个改进模块对检测效果的

具体影响，开展了一系列对比实验． 所有实验均基于 ＰＡＳＣＡＬ
ＶＯＣ２０１２ 数据集展开，以此全面分析不同改进方法在该数据

集环境下呈现出的效果差异． 以 ＹＯＬＯｖ８ｎ 作为基线模型进

行一系列实验，分别对可变形卷积、特征金字塔、动态解耦头、
多尺度注意力机制融合以及损失函数更换等方面进行了逐步

改进，呈现了各模块对模型性能产生的影响，其中“√”表示

在 ＹＯＬＯｖ８ｎ 网络模型上应用了相应的改进方法． 实验结果

如表 １ 所示．

表 １　 ＳＬＡＷ⁃ＹＯＬＯＶ８ 在 ＰＡＳＣＡＬ ＶＯＣ２０１２ 上的消融实验

Ｔａｂｌｅ １　 Ａｂｌａｔｉｏｎ ｅｘｐｅｒｉｍｅｎｔ ｏｆ ＳＬＡＷ⁃ＹＯＬＯＶ８ ｏｎ ＰＡＳＣＡＬ ＶＯＣ２０１２
模型 ＳＣＣｏｎｖ ＬＳＫＡ ＡＳＦＦ ＥＭＡ Ｗｉｓｅ⁃ＭＰＤＩｏＵ Ｐ Ｒ ＡＰ０． ５ ＡＰ０． ５ ～ ０． ９５ ＧＦＬＯＰｓ ＦＰＳ

① ６７􀆰 １％ ５６􀆰 ３％ ６１􀆰 ５％ ４４􀆰 ８％ ８􀆰 ２ ５５􀆰 ３
② √ ６８􀆰 ５％ ５６􀆰 ９％ ６２􀆰 ６％ ４６􀆰 ５％ ９􀆰 ０ ４２􀆰 ５
③ √ ６９􀆰 ７％ ５６􀆰 ３％ ６３􀆰 １％ ４５􀆰 ９％ ８􀆰 ３ １０４
④ √ ７３􀆰 ３％ ５７􀆰 ５％ ６３􀆰 ５％ ４６􀆰 ７％ １０􀆰 ３ ４１􀆰 ５
⑤ √ ７０􀆰 ５％ ５５􀆰 ５％ ６２􀆰 １％ ４５􀆰 ３％ ８􀆰 ２ １０８
⑥ √ √ ７１􀆰 ３％ ５６􀆰 ７％ ６３􀆰 ４％ ４７􀆰 ２％ ９􀆰 ６ ４１􀆰 ２
⑦ √ √ √ ７０􀆰 ４％ ５７􀆰 ３％ ６４􀆰 ４％ ４７􀆰 ８％ １１􀆰 ７ ４３􀆰 ７
⑧ √ √ √ √ ７２􀆰 ９％ ５８􀆰 ３％ ６４􀆰 ９％ ４８􀆰 ５％ １１􀆰 ８ ４１􀆰 ９
ＳＬＡＷ⁃ＹＯＬＯＶ８ √ √ √ √ √ ７３􀆰 ９％ ５９􀆰 １％ ６５􀆰 ９％ ４９􀆰 ５％ １１􀆰 ８ ４１􀆰 ２

　 　 由表 １ 中的消融实验结果可知，将主干网络中的 Ｃ２ｆ 模

块改进为 Ｃ２ｆ＿ＳＣＣｏｎｖ 后，模型在 Ｐ、Ｒ 上分别提升了 ０􀆰 ６％ ，
在 ｍＡＰ＠ ０􀆰 ５、ｍＡＰ＠ ０􀆰 ５： ０􀆰 ９５ 上分别提升了 １􀆰 １％ 和

１􀆰 ７％ ． 这表明骨干网络的改进对模型的特征提取能力有显著

提升，能够更有效地应对密集行人检测任务中的遮挡和干扰

特征． 由于改进后的 ＳＣＣｏｎｖ 模块引入了空间重建和通道重

建操作，导致模型的深度增加，使计算量增至 ９􀆰 ０ ＧＦＬＯＰｓ，模
型的推理速度有所下降． 但 ｍＡＰ 的显著提升证明了 ＳＣＣｏｎｖ
模块在密集行人检测任务中的实用性，能够在一定的计算代

价增加下实现性能的有效优化．
加入 了 ＬＳＫＡ 模 块 后 的 改 进 模 型 相 较 于 原 始 的

ＹＯＬＯｖ８ｎ，在 Ｐ、ｍＡＰ＠ ０􀆰 ５、ｍＡＰ＠ ０􀆰 ５ ∶ ０􀆰 ９５ 上分别提高了

２􀆰 ６％ 、１􀆰 ６％和 １􀆰 １％ ，ＧＦＬＯＰｓ 保持不变，ＦＰＳ 提高至 １０４． 说
明 ＬＳＫＡ 可分离大卷积核注意力模块在提升检测精度同时加

快了检测速度，可以认为对特征金字塔结构的改进是很有

效的．
在颈部网络中加入了 ＡＳＦＦ 模块，将 ３ 个尺度大小的特

征进行融合，增加对应权重，并进行学，可以看出改进过后的
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算法在 Ｐ、Ｒ、ｍＡＰ＠ ０􀆰 ５、ｍＡＰ＠ ０􀆰 ５ ∶ ０􀆰 ９５ 都有不错的提升，
分别提高了 ６􀆰 ２％ 、１􀆰 ２％ 、２％ 和 １􀆰 ９％ ，说明 ＡＳＦＦ 自适应空

间融合方式对于算法精度提升具有明显作用，但是 ＦＰＳ 有所

降低．
对于使用改进后的 Ｗｉｓｅ⁃ＭＰＤＩｏＵ 损失函数作为边界框

回归函数，相较于基准算法，在不增加模型复杂度的情况下，
各项指标都有所提高，提升了网络的检测精度，也大幅度提高

了模型检测的速度，最后的结果可以看出对损失函数的优化

对整体改进后的网络也有更好的提升，表明 Ｗｉｓｅ⁃ＭＰＤＩｏＵ 损

失函数能够更好提升模型处理困难样本的能力．
此外，通过对比实验②和⑥可以发现，融合改进后的 Ｃ２ｆ

模块和特征金 字 塔 的 模 型 在 Ｐ、 ｍＡＰ ＠ ０􀆰 ５ 和 ｍＡＰ ＠
０􀆰 ５∶ ０􀆰 ９５上分别提高了 ４􀆰 ２％ 、１􀆰 ９％ 和 ２􀆰 ４％ ． 对比实验⑤和

⑥时，加入 ＥＭＡ 注意力机制后，尽管模型略微牺牲了检测速

度且增加了参数量，但召回率和 ｍＡＰ 得到了提升． 与实验①
对比，实验⑦在牺牲一定检测速度的情况下，４ 项评价指标均

实现了全面提升． 通过对比实验①和⑧，当采用所有 ４ 个改进

模块时，相较于基础模型，尽管增加了参数量，所提改进模型

在 Ｐ、Ｒ、ｍＡＰ＠０􀆰 ５ 和 ｍＡＰ＠ ０􀆰 ５∶ ０􀆰 ９５ 上分别提升了 ６􀆰 ８％ 、
２􀆰 ４％ 、４􀆰 ４％和 ４􀆰 ７％ ． 综合分析消融实验结果，证明本文所

提出的各个改进模块有效，能够满足实时性和准确性的需求．
２􀆰 ５　 对比实验

为了验证本文提出的 ＳＬＡＷ⁃ＹＯＬＯｖ８ 密集行人检测算

法在性能上的优越性， 设计 了 一 系 列 实 验， 将 ＳＬＡＷ⁃
ＹＯＬＯｖ８ 与基准算法 ＹＯＬＯｖ８ｎ 以及当前目标检测领域代表

性的算法进行对比分析． 这些算法包括 ＳＳＤ、ＹＯＬＯｖ３、
ＹＯＬＯｖ４、ＹＯＬＯｖ５ｓ、ＹＯＬＯｖ７ 和 ＹＯＬＯｖ８ｓ，所有算法均在

ＷｉｄｅｒＰｅｒｓｏｎ 数据集上进行了测试，实验结果如表 ２ 所示．

表 ２　 在 ＷｉｄｅｒＰｅｒｓｏｎ 数据集中不同目标检测算法的对比实验

Ｔａｂｌｅ ２　 Ｃｏｍｐａｒａｔｉｖｅ ｅｘｐｅｒｉｍｅｎｔｓ ｏｆ ｄｉｆｆｅｒｅｎｔ ｏｂｊｅｃｔ ｄｅｔｅｃｔｉｏｎ
ａｌｇｏｒｉｔｈｍｓ ｉｎ ｔｈｅ ＷｉｄｅｒＰｅｒｓｏｎ ｄａｔａｓｅｔ

模　 型 ＡＰ０． ５ ＡＰ０． ５∶ ０． ９５ ＧＦＬＯＰｓ ＦＰＳ
ＳＳＤ ６８􀆰 ４％ ⁃ ８７􀆰 ７ ５９
ＹＯＬＯｖ３ ８２􀆰 ０％ ４７􀆰 ６％ １１７􀆰 ７ ５４􀆰 ６
ＹＯＬＯｖ４ ８４􀆰 ９％ ５１􀆰 ９％ １７􀆰 ７ ６５
ＹＯＬＯｖ５ｓ ８７􀆰 ２％ ６４􀆰 ６％ １３􀆰 ７ ６４􀆰 ６
ＹＯＬＯｖ７ ８９􀆰 ２％ ６４􀆰 ３％ ７１􀆰 ３ ３１􀆰 ７
ＹＯＬＯｖ８ｓ ８８􀆰 ６％ ６７􀆰 ８％ ２８􀆰 ４ ６４􀆰 ５
ＹＯＬＯｖ８ｎ（ｂａｓｅｌｉｎｅ） ８７􀆰 ８％ ６３％ ８􀆰 １ ５５􀆰 ３
ＳＬＡＷ⁃ＹＯＬＯＶ８ｎ ８９􀆰 ３％ ６４􀆰 ９％ １１􀆰 ８ ４１􀆰 ２

　 　 在相同条件下，ＳＬＡＷ⁃ＹＯＬＯｖ８ 相较于其他目标检测算

法，如 ＳＳＤ 和 ＹＯＬＯｖ７，表现出显著的优势，拥有最高的

ｍＡＰ＠０􀆰 ５． 与 ＳＳＤ、ＹＯＬＯｖ３、ＹＯＬＯｖ４、ＹＯＬＯｖ５ｓ 和 ＹＯＬＯｖ８ｓ
算法相比，本文算法的 ｍＡＰ＠０􀆰 ５ 分别提高了 ２０􀆰 ９、７􀆰 ３、４􀆰 ４、
２􀆰 ９、和 ０􀆰 ７ 个百分点． 在计算量方面，ＳＬＡＷ⁃ＹＯＬＯｖ８ 相较于

ＳＳＤ、ＹＯＬＯｖ３、ＹＯＬＯｖ４、ＹＯＬＯｖ５ｓ 和 ＹＯＬＯｖ７ 分别减少了

７５􀆰 ９、１０５􀆰 ９、５􀆰 ９、１􀆰 ９ 和 ５９􀆰 ５ ＧＦＬＯＰｓ． 虽然与 ＹＯＬＯｖ８ｎ 相比

增加了 ３􀆰 ７ ＧＦＬＯＰｓ 的计算量，但其精度显著提高，进一步证

明了该算法的优越性．
２􀆰 ６　 检测结果可视化

为了直观展现算法改进的效果，本文对 ＹＯＬＯｖ８ｎ 和

ＳＬＡＷ⁃ＹＯＬＯｖ８ 在训练 ＰＡＳＣＡＬ ＶＯＣ２０１２ 数据集过程中的

Ｐ、Ｒ、ｍＡＰ＠０􀆰 ５ 和 ｍＡＰ＠０􀆰 ５：０􀆰 ９５ 等指标进行可视化对比，
结果如图 ７ 所示．

图 ７　 ＹＯＬＯｖ８ｎ 与 ＳＬＡＷ⁃ＹＯＬＯｖ８ 指标对比

Ｆｉｇ． ７　 Ｃｏｍｐａｒｉｓｏｎ ｏｆ ＹＯＬＯｖ８ｎ ａｎｄ ＳＬＡＷ⁃
ＹＯＬＯｖ８ ｉｎｄｉｃａｔｏｒｓ

从图中能够看出，随着迭代次数不断上升，这两种算法最

后皆可达到收敛的状态． 然而，改进后的 ＳＬＡＷ⁃ＹＯＬＯｖ８ 在

Ｐ、Ｒ、ｍＡＰ＠ ０􀆰 ５ 和 ｍＡＰ＠ ０􀆰 ５：０􀆰 ９５ 等指标上全面优于基准

ＹＯＬＯｖ８ｎ，这表明改进后的算法在检测精度上取得了显著

提升．
为使本文改进算法的检测效果呈现得更为直观，分别运

用 ＹＯＬＯｖ８ｎ 以及本文所提方法，针对多种密集人群场景展

开检测工作． 检测效果的对比情况，如图所示． 图中左边呈现

的是 ＹＯＬＯｖ８ 算法的检测效果图，而右边则是基于 ＹＯＬＯｖ８
的本文改进算法的检测效果图．

在严重遮挡场景中（如图 ８ 所示），原始图像包含 １０２ 个

站立行人，ＹＯＬＯｖ８ｎ 的检测结果漏检现象明显，仅识别出前

３ 排的站立行人，而后排因遮挡严重几乎全部漏检． 而

ＳＬＡＷ⁃ＹＯＬＯｖ８ 显著提升了检测数量，检测框的置信度也较

高． 在人群密集场景中（如图 ９ 所示），由于人群拥挤，行人特

征不够明显，ＹＯＬＯｖ８ｎ 仅检测出少量具有完整行人特征的目

标． 相比之下，ＳＬＡＷ⁃ＹＯＬＯｖ８ 检测到的 Ｐｅｒｓｏｎ 类别数量增

加了 １６ 个，同时保持较高的置信度． 在背景昏暗场景中（如
图 １０ 所示），ＹＯＬＯｖ８ｎ 对被水雾遮挡的行人完全无法检测，
且置信度较低，而 ＳＬＡＷ⁃ＹＯＬＯｖ８ 检测出 ２３ 个 Ｐｅｒｓｏｎ 类别

目标，比 ＹＯＬＯｖ８ｎ 多 ９ 个，同时对被水雾遮挡的目标和远处

小目标的检测能力大幅提升． ＳＬＡＷ⁃ＹＯＬＯｖ８ 在处理严重遮

挡、人群密集以及背景昏暗等复杂场景时展现出显著优势．
经分析可知，在小尺度密集遮挡行人检测任务中，

ＹＯＬＯｖ８ｎ 出现漏检的情况较为频繁． 与之相比，改进后的

ＳＬＡＷ⁃ＹＯＬＯｖ８ 漏检现象大幅降低，检测效果获得了显著提

高． 在行人密集的场景里，ＳＬＡＷ⁃ＹＯＬＯｖ８ 优势突出． 综合来
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看，相较于原算法，改进后的 ＳＬＡＷ⁃ＹＯＬＯｖ８ 在复杂场景下 的检测性能更为出色．

图 ８　 在严重遮挡时行人检测结果比较

Ｆｉｇ． ８　 Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｐｅｄｅｓｔｒｉａｎ ｄｅｔｅｃｔｉｏｎ ｒｅｓｕｌｔｓ ｉｎ ｓｅｖｅｒｅ ｏｃｃｌｕｓｉｏｎ

图 ９　 在人群密集时行人检测结果比较

Ｆｉｇ． ９　 Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｐｅｄｅｓｔｒｉａｎ ｄｅｔｅｃｔｉｏｎ ｒｅｓｕｌｔｓ ｉｎ ｃｒｏｗｄｅｄ ｔｉｍｅｓ

图 １０　 在背景昏暗时行人检测结果比较

Ｆｉｇ． １０　 Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｐｅｄｅｓｔｒｉａｎ ｄｅｔｅｃｔｉｏｎ ｒｅｓｕｌｔｓ ｉｎ ａ ｄｉｍ ｂａｃｋｇｒｏｕｎｄ

３　 结　 论

本文基于 ＹＯＬＯｖ８ｎ 网络进行改进，提出了一种适用于

密集行人检测任务的新模型 ＳＬＡＷ⁃ＹＯＬＯｖ８． 改进主要体现

在 ４ 个方面：结合 ＳＣＣｏｎｖ 模块增强特征提取能力，利用 ＬＳ⁃
ＫＡ 模块实现特征融合，在检测头中引入 ＡＳＦＦ 模块，以及将

ＣＩｏＵ 损失函数替换为 Ｗｉｓｅ⁃ＭＰＤＩｏＵ 损失函数． 通过实验验

证，本文所提出的模型能够高效、精准地完成密集行人目标的

定位与识别任务，有效平衡了复杂场景下的目标定位准确率

与检测实时性需求，本文在 ＷｉｄｅｒＰｅｒｓｏｎ 数据集上对多种目

标检测算法进行了全面对比，尤其是针对小尺度密集遮挡行

人检测场景，与多种对比模型相比，展现出了卓越的性能表

现． 不过，需要注意的是，实际的密集行人场景中，目标分布情

况更为复杂． 未来的研究方向将主要聚焦于实际场景的应用，
进一步提升模型在小目标检测方面的性能表现与适应性． 就

目前而言，该算法仍然存在漏检的问题，并且检测速度也有待

进一步提升． 接下来的工作重点将放在优化网络性能上，提高

模型在密集场景下的检测速度，以便更好地适配嵌入式 ＧＰＵ
平台的部署，推动该算法在更多实际密集行人场景中得到广

泛应用．
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［１２］ 高　 昂，梁兴柱，夏晨星，等． 一种改进 ＹＯＬＯｖ８ 的密集行人检

测算法［Ｊ］ ． 图学学报，２０２３，４４（５）：８９０⁃８９８．

８４９２ 　 　 　 　 　 　 小　 型　 微　 型　 计　 算　 机　 系　 统 　 　 　 　 　 　 ２０２５ 年


