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摘　 要： 医学成像技术能够清晰展示患者的解剖结构，辅助医生非侵入性观察患者体内结构和功能． 近年来，基于 ＣＮＮ 和

Ｔｒａｎｓｆｏｒｍｅｒ 的图像分割算法在医学图像处理领域得到了广泛应用． 但两者的结合方式往往过于简单，不能充分发挥其各自的

优势． 本文提出了一种新型的双分支融合网络（ＰＤＢＦ），该网络在继承编码器⁃解码器基本结构的基础上，设计了由深度可分离

卷积分支和窗口自注意力分支组成的并行模块． 这一双分支结构能够同时提取 Ｔｒａｎｓｆｏｒｍｅｒ 窗口内和窗口间的特征信息，从而

有效扩大感受野． 此外，模块中引入了跨分支的双向注意力融合机制，用以弥补因权重共享导致的通道或空间维度上的信息缺

失问题． 以 ＤＳＣ 和 ＨＤ９５ 为评价指标，本文在 ＢＣＶ、ＡＣＤＣ 及私有胰腺肿瘤数据集上的对比实验结果表明，ＰＤＢＦ 与其他医学图

像分割网络相比，可以取得更好的分割效果．
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０　 引　 言

医学成像技术是一种重要的医疗检查手段，是疾病诊断

的重要参考依据． 据世界卫生组织统计，医学诊断中 ７０％ ～
８０％依靠医学成像技术［１］ ． 在临床实践中，医疗诊断要求医

生具备丰富的经验和精力，但在大量切片中确定器官和病灶

位置的需求极大增加了医生手动注释的负担［２］ ． 另一方面，
不同的医生在专业水平上难免存在差异，对于同样的病情，不

同医生的诊断结果可能不同，甚至出现误诊的情况［３］ ． 随着

计算机算力的高速发展，基于深度学习的图像分割网络作为

一种可以快速而精确的从医学图像中自动提取器官或病灶，
从而辅助医生进行决策的解决方案被提出． ＣＮＮ 在图像分割

领域已经显示出卓越的性能，其深层次的网络结构能有效学

习图像的局部特征，这对医学图像分割至关重要． ２０１５ 年由

Ｒｏｎｎｅｂｅｒｇｅｒ［４］ 所提出的 Ｕ⁃Ｎｅｔ 网络作为深度学习在医学图

像分割领域的基石，它利用对称的编码器⁃解码器结构，构造



了数据像素点从输入域到输出域的映射，并在当年的 ＩＳＢＩ 竞
赛中获得多个第 １ 名． Ｈａｎ［５］ 提出的 ＲｅｓＵ⁃ｎｅｔ 使用残差模块

代替了 Ｕ⁃Ｎｅｔ 模型中的所有卷积模块，在肝脏 ＣＴ 图像分割

中取得了很好的效果． Ｏｋｔａｙ 等人［６］ 提出的集成注意力门

（Ａｔｔｅｎｔｉｏｎｇａｔｅ，ＡＧ）的 ａｔｔｅｎｔｉｏｎＵ⁃Ｎｅｔ，通过在网络中嵌入特殊

模块而非改进网络本身结构来提高分割性能． 纯卷积神经网

络具有自动提取特征、适应性强、处理速度快等优点，但由于

其每个卷积核的感受野有限，使得卷积网络缺乏全局上下文

建模的能力．
近年来，Ｔｒａｎｓｆｏｒｍｅｒ 架构在自然图像处理领域展现出了

强大的性能优势，其核心在于通过全局注意力机制建立任意

两像素点之间的关联，从而具备了极强的上下文建模能力． 这
一特性使 Ｔｒａｎｓｆｏｒｍｅｒ 在捕捉长距离依赖和复杂图像特征方

面优于传统的卷积神经网络． Ｔｒａｎｓｆｏｒｍｅｒ 结构最早由 Ｖａｓｗａ⁃
ｎｉ 等人［７］在 ２０１７ 年提出，用于机器翻译领域． ２０２０ 年，Ｄｏｓｏ⁃
ｖｉｔｓｋｉｙ 等人［８］提出了第一个完全基于自注意力机制的图像分

类 Ｔｒａｎｓｆｏｒｍｅｒ 模型 ＶｉＴ，这也是第一个使用 Ｔｒａｎｓｆｏｒｍｅｒ 来代

替标准卷积的方法． 之后，Ｌｉｕ 等人［９］ 基于自注意力机制，以
层次化构建方式建立了通用的视觉骨干网络 Ｓｗｉｎ Ｔｒａｎｓｆｏｒｍ⁃
ｅｒ，改善了 ＶＩＴ 模型计算量大，模型本身无法编码位置的问

题． Ｍｉｘｆｏｒｍｅｒ［１０］针对跨窗口的信息交互方式进行改进，通过

卷积提取窗口间信息从而舍弃了移动窗口结构．
然而，与自然图像相比，医学图像数据集通常存在规模较

小、样本数量有限、原始尺寸较大的特点，这种差异给 Ｔｒａｎｓ⁃
ｆｏｒｍｅｒ 的直接应用带来了挑战． 一方面，Ｔｒａｎｓｆｏｒｍｅｒ 的自注

意力机制导致计算复杂度随输入图像大小呈二次增长，使得

其在大规模训练时计算成本高昂；另一方面，Ｔｒａｎｓｆｏｒｍｅｒ 缺

乏卷积神经网络所具备的归纳偏置，在小样本条件下的泛化

能力较差． 为了克服这些问题，在 ＣＮＮ 架构的基础上加入

Ｔｒａｎｓｆｏｒｍｅｒ 的混合结构作为医学图像分割的折衷解决方案

被提出，该方案同时平衡了计算效率与模型性能． ２０２１ 年，首
个将 Ｔｒａｎｓｆｏｒｍｅｒ 应用于医学图像分割领域的模型 ＴｒａｎｓＵ⁃
Ｎｅｔ［１１］被提出，该网络模型依赖于经过预训练的 ＶｉＴ 模型，通
过把编码器中的深层卷积层与 Ｔｒａｎｓｆｏｒｍｅｒ 层进行简单级联

从而实现了二维图像分割性能的提升． 在此基础上，Ｔｒａｎｓ⁃
ＢＴＳ［１２］直接处理体积三维医学图像而非二维切片，实现跨空

间维度的特征提取． Ｈａｔａｍｉｚａｄｅｈ 等人［１３］ 则提出了使用多头

自注意力替换了编码器中卷积层的 ＵＮＥＴＲ，它将 ３Ｄ 医学图

像分割任务设计为一维序列到序列的预测问题． ＣｏＴｒ［１４］ 通过

Ｔｒａｎｓｆｏｒｍｅｒ 桥接编码器的所有阶段以捕获多尺度上的全局

依赖性． 与以上更关注于探索 Ｔｒａｎｓｆｏｒｍｅｒ 与 ＣＮＮ 混合应用

的可行性，在结构上仅通过简单的替换或串联实现的研究相

对应，ＴｒａｎｓＦｕｓｅ［１５］为了同时保留全局信息与细节信息，在编

码器中对卷积与 Ｔｒａｎｓｆｏｒｍｅｒ 并行排列，提出了并行分支结

构． 考虑到信息粒度的一致性，ＴｒａｎｓＦｕｓｅ 在融合分支间特征

时选择了逆序融合． Ｘ⁃Ｎｅｔ［１６］ 在 ＴｒａｎｓＦｕｓｅ 的基础上改进，使
用两条完整且独立的 ＣＮＮ 与 Ｔｒａｎｓｆｏｒｍｅｒ 分支同时提取局部

和全局特征． ＰＨＴｒａｎｓ［１７］保留了并行分支结构，转而构建单独

的可堆叠双分支子模块，建立分层的局部⁃全局表示． ＭＳ⁃Ｄｕ⁃
ａｌ［１８］则通过两条额外的平行引导分支对不同尺度下的特征

进行细化，强化有利于医学图像分割任务的关联特征，降低无

关特征对分割结果的影响．
目前上述文献所讨论的 ＣＮＮ 与 Ｔｒａｎｓｆｏｒｍｅｒ 混合的网络

模型，在网络结构实现上可以分为 ３ 类：简单地在 Ｕ 型结构

的不同层次插入 Ｔｒａｎｓｆｏｒｍｅｒ 层、在单层中将卷积与 Ｔｒａｎｓ⁃
ｆｏｒｍｅｒ 串联以及 ＣＮＮ 与 Ｔｒａｎｓｆｏｒｍｅｒ 组成独立双分支结构．
这 ３ 类组合结构都不能完全发挥出 ＣＮＮ 与 Ｔｒａｎｓｆｏｒｍｅｒ 结合

的优势． 本文在此基础上提出了一个用于医学图像分割的并

行 ＣＮＮ 与 Ｔｒａｎｓｆｏｒｍｅｒ 双分支融合网络（ＰＤＢＦ） ． ＰＤＢＦ 遵循

了经典的编码器⁃解码器结构，通过并行应用深度可分离卷积

和窗口自注意力，分别处理窗口内和跨窗口的信息，扩大接受

域． 其次，为了克服深度可分离卷积和多头自注意力具有的权

重共享所带来的限制，ＰＤＢＦ 引入了分支间的双向注意力融

合． 它可以补足 ＣＮＮ 和 Ｔｒａｎｓｆｏｒｍｅｒ 分支所缺失的信息，增强

空间和通道维度的建模能力．
本文工作的主要成果如下：１）针对医学图像分割问题，

提出了一种新的分割网络 ＰＤＢＦ，并行耦合了 ＣＮＮ 与 Ｔｒａｎｓ⁃
ｆｏｒｍｅｒ 这两种特征的提取重建方法，使网络兼顾局部细节和

全局上下文的统一理解，进而提升对整体输入数据的表征能

力；２）进一步的，在分支间引入了双向的注意力融合机制，利
用分支间不同维度上的富裕信息进行相互补足，从而克服深

度可分离卷积和窗口自注意力因权重共享所带来的限制；３）
新提出的 ＰＤＢＦ 网络在公共数据集和私有胰腺肿瘤数据集上

的实验结果均优于目前先进的图像分割竞争方法．

１　 网络结构

１． １　 总体框架

ＰＤＢＦ 结构图如图 １ 所示，本文参考了 ３Ｄ Ｕ⁃Ｎｅｔ 的主体

框架，采用 Ｕ 型编码器⁃解码器结构设计，同级编码器和解码

器之间通过跳跃连接进行特征拼接． 相较于经典的卷积 Ｕ⁃
Ｎｅｔ 网络，本文希望能在同一层中同时构建局部特征和全局

特征，因此提出了一个特殊的并行双分支注意力融合块． 该融

合块包含深度可分离卷积和窗口自注意力两个分支，分别处

理不同尺度的局部特征． Ｔｒａｎｓｆｏｒｍｅｒ 分支专注于窗口内信

息，而卷积分支利用空间连续性提取跨窗口信息． 两者结合实

现了不同感受域窗口下的特征整合，增强了对全局特征的表

征，以适应复杂分割任务． 同时为了弥补不同分支在空间域或

通道域上的缺失，融合块中引入了跨分支的双向注意力融合

机制． 不同分支之间通过对应的注意力机制进行增强，完善不

同分支的特征信息表达． 考虑到局部窗口自注意力分支中所

应用的自注意力机制的计算复杂度与输入图像的像素大小成

正比，若直接将原始图像数据的像素值作为 ｔｏｋｅｎ 序列输入

至计算网络模型中，会对图形处理单元（ＧＰＵ）提出较高的性

能要求． 在网络的具体实现上，本文采用了在浅层网络部分引

入堆叠的级联卷积和下采样的方案． 通过下采样操作减小特

征图的空间尺寸后，堆叠的级联卷积逐层提取高分辨率的底

层特征，从而进一步优化特征图所包含的局部信息表征．
ＰＤＢＦ 整体网络结构由堆叠卷积模块 （ Ｓｔａｃｋｅｄ Ｃｏｎｖ

Ｍｏｄｕｌｅ）和双融合模块（ＢｉＦｕｓｉｏｎ Ｍｏｄｕｌｅ）组成． 堆叠卷积模

块内包含了两层级联的纯卷积块（Ｃｏｎｖ Ｂｌｏｃｋ）和下采样操

作，初步提取图像浅层特征信息并减小或还原特征图大小，便

８６９２ 　 　 　 　 　 　 小　 型　 微　 型　 计　 算　 机　 系　 统 　 　 　 　 　 　 ２０２５ 年



于后续计算；而双融合模块则由若干层并行双分支注意力融

合块（Ｄｕａｌ Ｂｒａｎｃｈ Ｆｕｓｉｏｎ Ｂｌｏｃｋ）序列组成，单个序列中包含

两个相同的串联双分支注意力融合块，负责进一步提取融合

图 １　 ＰＤＢＦ 网络架构

Ｆｉｇ． １　 Ａｒｃｈｉｔｅｃｔｕｒｅ ｏｆ ＰＤＢＦ

图像的深层特征信息． 设输入图像块的体积像素尺寸大小为

ｘ∈ＲＲ Ｄ × Ｈ ×Ｗ × １，其中 Ｄ、Ｈ、Ｗ 分别为输入图像块的深度、高度

和宽度． 在编码器中，输入图像块首先通过浅层堆叠卷积模

块，使通道数将上升至基础通道数 Ｃ，再逐层进行局部特征提

取并下采样． 堆叠卷积模块内包含两层级联纯卷积块和下采

样，通过堆叠卷积模块得到的特征映射像素尺寸大小将为

ｘ∈ＲＲ
Ｄ
４ × Ｈ

４ × Ｗ
４ × ４Ｃ ． 之后，纯卷积层初步提取的图像特征经由若

干并行双分支注意力融合块组成的双融合模块，充分对局部

和全局特征的分层表示进行建模，经过融合块多次下采样后

的输出特征尺寸为 ｘ∈ＲＲ
Ｄ
３２ × Ｈ

３２ × Ｗ
３２ × ３２Ｃ ． 解码器部分的网络结构

设置与编码器对称，深层网络的输出经上采样还原后与对应

层级的编码器输出进行跳跃连接操作． 跳跃连接的输出将作

为对应层的并行双分支交互模块或纯卷积块的输入，继续进

行后续的图像空间维度恢复和像素级别的分类．
１． ２　 并行双分支注意力融合块

为了避免计算复杂度对网络造成限制，并行双分支注意

力融合块仅部署在网络的深层阶段． 具体结构如图 ２ 所示．
１． ２． １　 并行结构

由于网络在特征提取过程中操作的累积效应，深层网络

阶段所处理的特征映射已呈现出抽象化形态，这强迫网络更

专注于特征的位置、结构等全局信息． 受结构所限，纯卷积结

构的感受野偏小，只能捕捉局部特征，如边缘、纹理等；而与

ＣＮＮ 互补的 Ｔｒａｎｓｆｏｒｍｅｒ 能够捕获长距离的全局依赖关系，
有助于网络建立并理解特征像素点之间的相互作用和整体结

构． 但在实际应用中，直接使用 Ｔｒａｎｓｆｏｒｍｅｒ 计算量过于庞大．
因此，将完整的特征图分为若干非重叠的窗口，并对单个窗口

域进行多头自注意力的操作作为提高 Ｔｒａｎｓｆｏｒｍｅｒ 计算效率

的替代方案被提出，这种方法以牺牲接受野为代价大幅减小

了计算量． 之后的研究以此为基础，采取多种方法增加跨窗口

信息交互，模拟跨窗口的连接，包括移位［９］ 、卷积［１９］ 或展

开［２０］等． 这些方法虽然能够分别捕捉窗口内和跨窗口的信

息，但它们通常在网络中串行排列，跨窗口的信息交互依赖于

窗口内信息的再提取，这导致了局部关系和全局关系交织

较少．

图 ２　 并行双分支注意力融合块

Ｆｉｇ． ２　 Ｐａｒａｌｌｅｌ ｄｕａｌ ｂｒａｎｃｈ ａｔｔｅｎｔｉｏｎ ｆｕｓｉｏｎ ｂｌｏｃｋ
（ｄｕａｌ ｂｒａｎｃｈ ｆｕｓｉｏｎ ｂｌｏｃｋ）

　 　 结合卷积及跨窗口自注意力的特点和性质，本文设计了

一种并行双分支结构． 该结构包括深度可分离卷积分支和局

部窗口 Ｔｒａｎｓｆｏｒｍｅｒ 分支，二者分别独立提取不同窗口大小下

局部特征的分层表示进行建模． 对于 Ｔｒａｎｓｆｏｒｍｅｒ 分支，该分

支仅通过窗口自注意力，进行限定窗口范围内的信息提取． 对
于深度可分离卷积分支，卷积操作由于其固有的空间连续性，
通过卷积核在特征图上的滑动操作，可以自然地捕捉到相邻

区域间的连续性，从而有效地提取窗口间的信息． 因此，平行

卷积分支不仅实现了在进行多头自注意力特征提取的同时对

窗口间信息的建模，而且确保了模型在处理复杂医学图像分

割任务时，能综合理解局部细节与全局上下文信息，从而增强

了网络模型对输入数据的整体表征能力． 此外，通过分支间的

特征融合，网络能够在不同感受窗口尺寸下整合局部特征，从
而获得更为全面的全局特征信息，扩大接受域． 得益于此，模
块无需额外的移动窗口结构，减小了计算消耗．

并行双分支注意力融合模块由两条平行路径组成，分别

包含基于不同窗口大小的窗口自注意力机制和深度卷积操

作． 在深度可分离卷积分支中，采用了 ３ × ３ × ３ 大小的卷积

核，以平衡计算效率和精度． 而在局部窗口 Ｔｒａｎｓｆｏｒｍｅｒ 分支

中，窗口大小根据不同数据集的特性进行调整． 图 ２ 以 ＢＣＶ
数据集为例，采用 ３ × ６ × ６ 的窗口大小． 设 ｘ∈ＲＲ ＤＮ × ＨＮ ×ＷＮ × ＣＮ

作为并行双分支注意力融合块的输入，通过线性层对其进行

映射，生成两个独立的张量，维度均为 ＤＮ × ＨＮ × ＷＮ ×
ＣＮ

２ ，分

别作为两条分支的输入． 两个分支的输出经过归一化处理后
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进行拼接融合，随后传递至前馈神经网络（ＦＦＮ）升维，在高维

空间中探索更丰富的特征表示． 最终，得到包含局部信息的全

局特征，该全局特征的维度与输入维度保持一致．
相比传统的卷积网络或 Ｖｉｓｉｏｎ Ｔｒａｎｓｆｏｒｍｅｒ，该模块中的

并行结构通过并行应用小尺寸卷积核和局部窗口 Ｔｒａｎｓｆｏｒｍ⁃
ｅｒ，ＰＤＢＦ 能够同时建模窗口内和窗口间的关系，建立跨窗口

的连接模型，从而以更小的计算代价捕获更全面的特征表达．
１． ２． ２　 双向注意力融合

深度可分离卷积的过滤器独立作用于各自的通道且仅在

单通道内滑动并提取特征，该设计减少了模型参数和计算量，
同时保证了有效的特征提取能力，但使得每个过滤器在各自

通道的空间维度上共享权重． 而基于查询（Ｑｕｅｒｙ）、键（Ｋｅｙ）
和值（Ｖａｌｕｅ）框架的 Ｔｒａｎｓｆｏｒｍｅｒ 则采取相反的策略． 它通过

在空间维度上动态计算权重，并在通道维度上共享权重来实

现特征建模． Ｔｒａｎｓｆｏｒｍｅｒ 通过 Ｑｕｅｒｙ 和 Ｋｅｙ 矩阵之间计算相

似度得到权重矩阵，从而使模型能够在处理任意位置的输入

时综合考虑序列中的所有位置． 由于该权重矩阵通过比较序

列中不同位置的元素计算获得，主要反映的是序列内元素在

空间维度上的相互关系，而非通道维度上的关联．
通常，共享权重的应用会对共享维度的建模能力产生限

制． 为了克服这一问题，常见的做法是生成与数据特征相对应

的权重． 因此，本文在分支间双向注意力融合机制中，设计结

合空间注意力和通道注意力，实现了跨平行分支的信息融合．
在网络架构设计上，针对两个分支各自的特性，采取相匹配的

差异化处理策略． 从卷积分支出发，深度可分离卷积处理后的

特征经过通道注意力的筛选与提炼，生成与当前特征相匹配

的通道权重并作为 Ｔｒａｎｓｆｏｒｍｅｒ 分支的额外输入，以提升窗口

自注意力在通道维度上的建模能力． 得到的 Ｔｒａｎｓｆｏｒｍｅｒ 分支

输出也将同时作为空间注意力的输入，用以增强同一阶段深

度卷积分支已获得的提取特征． 值得注意的是，在 Ｔｒａｎｓｆｏｒｍ⁃
ｅｒ 分支中，由于自注意力在通过 Ｑｕｅｒｙ 矩阵和 Ｋｅｙ 矩阵计算

权重矩阵这一过程中仅考虑空间域上像素与像素之间的联

系，而不考虑通道间的关联，因此将 Ｑ、Ｋ 矩阵与通道注意力

权重结合是无效的，本文选择仅在 Ｖａｌｕｅ 矩阵上进行注意力

融合操作．

图 ３　 通道注意力块 ＣＡ 和空间注意力块 ＳＡ
Ｆｉｇ． ３　 Ｃｈａｎｎｅｌ ａｔｔｅｎｔｉｏｎ ＆ ｓｐａｃｅ ａｔｔｅｎｔｉｏｎ

　 　 本文借鉴 ＳＥ 层［２１］ 和 ＣＢＡＭ［２２］ ，设计了通道注意力块

ＣＡ 和空间注意力块 ＳＡ，如图 ３ 所示．
对于通道注意力块 ＣＡ，通过对输入特征进行全局平均

池化，将每个通道的空间信息浓缩为一个标量值． 该标量值作

为一个简洁的通道描述符，编码了每个通道的全局概要信息．
随后，利用两个串联的 １ × １ × １ 卷积层，并插入批归一化

（ＢＮ）和激活函数（ＧＥＬＵ），以轻量级的方式捕捉通道间的相

互关系，学习不同通道的相对重要性． 最终通过 ｓｉｇｍｏｉｄ 激活

函数在通道维度上生成注意力权重，为每个通道分配一个 ０
～ １ 之间的权重值，以表征其在当前输入中的重要性． 对于空

间注意力块 ＳＡ，输入特征首先通过一系列 １ × １ × １ 卷积层进

行融合和降维，生成综合的空间特征图． 在此过程中，特征的

通道数被缩减至 １，从而引导模型关注特征图的空间信息而

非通道信息． 通过这一操作，每个空间位置均可获得一个综合

所有通道信息的单一值，用以评估该位置的空间重要性． 最
终，利用与通道注意力类似的 ｓｉｇｍｏｉｄ 层对空间特征图进行

处理，生成空间注意力图．

２　 实验验证

２． １　 数据集

Ｔｈｅ Ｍｕｌｔｉ⁃Ａｔｌａｓ Ｌａｂｅｌｉｎｇ Ｂｅｙｏｎｄ ｔｈｅ Ｃｒａｎｉａｌ Ｖａｕｌｔ
（ＢＣＶ） ［２３］ ，出自ＭＩＣＣＡＩ ２０１５ 举办的Ｗｏｒｋｓｈｏｐ，由范德堡大

学医学中心（Ｖａｎｄｅｒｂｉｌｔ Ｕｎｉｖｅｒｓｉｔｙ Ｍｅｄｉｃａｌ Ｃｅｎｔｅｒ）提供． 包含

共 ３０ 份已标注腹部 ＣＴ 扫描，数据集由 ８５ ～ １９８ 张切片组成，
切片厚度在 ２． ５ｍｍ ～ ５． ０ｍｍ 之间，像素大小为 ５１２ × ５１２． 分
为 １８ 个训练样本和 １２ 个测试样本． 其完整数据集包含 １３ 个

待分割目标，为了确保所进行的分割性能对比研究的客观性

和可比性，且为了与其他独立研究者的数据集进行一致性的

评估，本文从完整的 ＢＣＶ 数据集中选取了 ８ 个类别（主动脉、
胆囊、脾脏、左肾、右肾、肝脏、胰腺、脾脏、胃）进行研究．

Ｔｈｅ Ａｕｔｏｍａｔｅｄ Ｃａｒｄｉａｃ Ｄｉａｇｎｏｓｉｓ Ｃｈａｌｌｅｎｇｅ（ＡＣＤＣ） ［２４］ ，
出自 ２０１７ 年 ＭＩＣＣＡＩ 心脏自动诊断挑战赛． 数据集包含 １００
例试者心脏舒张末期和收缩末期的磁共振影像以及对应的左

心室心内膜、心外膜和右心室心外膜的手工标注轮廓，由 ６ ～
２１ 张切片组成，切片厚度在 ５． ０ｍｍ ～ １０． ０ｍｍ 之间，像素大

小由 １５４ × １５４ ～ ４２８ × ５１２． 分为 ７０ 个训练样本、１０ 个验证样

本和 ２０ 个测试样本，分割目标为左心室（ＬＶ），右心室（ＲＶ）
和心肌（ＭＹＯ） ．

由长海医院所提供的胰腺肿瘤数据集，包含 １１７ 例患者

的 ３Ｄ ＣＴ 成像，由 １３０ ～ ３００ 张切片组成，切片厚度在 ０． ８ｍｍ
～２． ０ｍｍ 之间，像素大小为 ５１２ × ５１２． 分为 ９４ 个训练样本和

２３ 个测试样本，分割目标为胰腺的肿瘤区域（包括偏良性的

ＳＣＮ 浆液性囊性肿瘤与偏恶性的 ＭＣＮ 粘液性囊性肿瘤） ．
２． ２　 评价指标

为了有效评估分割算法的性能，通常采用度量网络预测

的分割结果与由人类专家标注的真实分割结果之间相似度的

方法． 这种评估方式能够客观衡量算法性能的优劣． 本文选择

使用 ＤＳＣ［２５］ （Ｄｉｃｅ Ｓｉｍｉｌａｒｉｔｙ Ｃｏｅｆｆｉｃｉｅｎｔ）和 ＨＤ９５［２６］ （Ｈａｕｓ⁃
ｄｏｒｆｆ Ｄｉｓｔａｎｃｅ⁃９５％ ）作为网络分割性能的评价指标． 这两个

评价指标从不同的角度反映了分割质量，ＤＳＣ 关注的是预测

结果与真实标签的整体一致性，而 ＨＤ９５ 则专注于衡量分割

０７９２ 　 　 　 　 　 　 小　 型　 微　 型　 计　 算　 机　 系　 统 　 　 　 　 　 　 ２０２５ 年



轮廓与真实边界之间的最大偏差［２７］ ．
２． ２． １　 ＤＳＣ

ＤＳＣ 是衡量两个集合相似度的指标，反映了预测分割结

果与真实标签之间的相似程度． ＤＳＣ 的计算考虑了正确分割

的像素数量以及两个集合的总体大小． ＤＳＣ 值越接近 １，表明

分割结果与真实标签的重合度越高，即两个集合的相似度

越大．
其定义为：对于两个集合 Ｘ 和 Ｙ：

ＤＳＣ ＝ ２ ｜Ｘ∩Ｙ ｜
｜Ｘ ｜ ＋ ｜Ｙ ｜ （１）

其中， ｜Ｘ ｜和 ｜Ｙ ｜表示两个集合中所包含的元素的数量．
对于多分类的医学图像分割任务，针对每个分割类别单

独进行 ＤＳＣ 的计算，并基于类别种类求出平均 ＤＳＣ 作为当

前网络对整个数据集的分割性能表现的评判准则． 对于每个

类别 ｉ，ＤＳＣ 的计算公式为：

ＤＳＣ ＝
２ × ＴＰｉ

２ × ＴＰｉ ＋ ＦＰｉ ＋ ＦＮｉ
（２）

其中，ＴＰｉ 为正确预测为类别 ｉ 的像素数量（真正例），ＦＰｉ 为

错误预测为类别 ｉ 的像素数量（假正例），ＦＮｉ 为未正确预测

为类别 ｉ 的像素数量（假反例） ．
２． ２． ２　 ＨＤ９５

ＨＤ９５ 是衡量分割轮廓准确性的指标，反映了预测结果

中分割轮廓的整体准确性． ＨＤ９５ 关注于分割结果中的点到

真实标签边界最大距离的 ９５ 百分位数，即分割轮廓在整体上

与真实边界的接近程度． ＨＤ９５ 值越低，说明分割轮廓与真实

边界的差异越小，整体准确性越高．
对于 ＨＤ９５，定义如下：

ＨＤ９５（Ｐ，Ｇ） ＝ ｍａｘ｛ｈｄ９５（Ｐ，Ｇ），ｈｄ９５（Ｇ，Ｐ）｝ （３）
其中：

ｈｄ９５（Ｐ，Ｇ） ＝ｍａｘ
ｐ∈Ｐ

｛ｍｉｎ
ｇ∈Ｇ

‖ｐ － ｇ‖｝ （４）

ｈｄ９５（Ｇ，Ｐ） ＝ｍａｘ
ｇ∈Ｇ

｛ｍｉｎ
ｐ∈Ｐ

‖ｇ － ｐ‖｝ （５）

Ｐ 为预测体素的点集合，Ｇ 为真实体素的点集合，‖·‖是点

集 Ｐ 和点集 Ｇ 间的距离范式． ｈｄ９５ （Ｐ，Ｇ）和 ｈｄ９５ （Ｇ，Ｐ）分别

为预测体素到真实体素及真实体素到预测体素之间的最大第

９５ 百分位距离．
２． ３　 损失函数

２． ３． １　 Ｄｉｃｅ 损失函数

Ｄｉｃｅ 损失函数［２８］依据 Ｄｉｃｅ 系数构建，它对类别不平衡

问题具有一定的鲁棒性，这表明 Ｄｉｃｅ 损失函数在分割结果中

对于小目标的检测具有更高的敏感度．
Ｄｉｃｅ 损失函数的定义如下：

ＤｉｃｅＬｏｓｓ（Ｐ，Ｇ） ＝ １ －
２∑Ｎ

ｉ ＝１
ｐｉｇｉ

∑Ｎ

ｉ ＝１
ｐｉ ＋∑Ｎ

ｉ ＝１
ｇｉ

（６）

其中，Ｐ 为预测的图像，Ｇ 为真实的标签，ｐｉ 和 ｇｉ 分别为预测

图像 Ｐ 和真实标签 Ｇ 中第 ｉ 个像素的数值，Ｎ 为图像中的总

像素数量．
２． ３． ２　 交叉熵损失函数

交叉熵损失函数［２９］ 用于衡量模型预测的像素概率分布

与真实标签的像素分布之间的不一致性，它能够帮助模型更

为精确地学习并捕捉到各个类别的边界，促进模型识别出图

像中的微小变化．
交叉熵损失函数的定义如下：

ＬＣＥ（Ｐ，Ｇ） ＝ － １
Ｍ ∑

Ｍ

ｉ ＝１
∑

Ｃ

Ｃ ＝１
（Ｇｉｃ ｌｏｇ（ｐｉｃ）） （７）

其中，Ｐ 为预测的图像，Ｇ 为真实的标签，Ｍ 为训练样本的总

数，Ｃ 为训练样本中的类别总数，Ｇｉｃ为第 ｉ 个样本中第 Ｃ 个类

别的标签所对应的 ｏｎｅ⁃ｈｏｔ 编码，ｐｉｃ是模型的输出经由 ｓｏｆｔ⁃
ｍａｘ 函数转换后所得到的概率分布，它代表了第 ｉ 个样本中

属于第 Ｃ 个类别的概率值．
２． ４　 实验环境及参数设置

本文实验使用单个 ＲＴＸ ３０９０ ＧＰＵ 进行训练，基于 Ｐｙ⁃
ｔｈｏｎ３． ８ 及 Ｐｙｔｏｒｃｈ 深度学习框架实现 ＰＤＢＦ． 在训练阶段，使
用 ｎｎＵＮｅｔ［３０］的训练框架，采用 ｎｎＵ⁃Ｎｅｔ 的跨步策略进行下

采样和上采样，网络基础通道数 Ｃ 为 ２４，由浅到深不同阶段

的并行双分支注意力融合块所使用的多头自注意头数为［３，
６，１２，１２］ ． 对于 ＢＣＶ、ＡＣＤＣ 和私有胰腺肿瘤数据集，局部窗

口自注意力的窗口大小分别设置为［３，６，６］、［２，８，７］和［５，
６，５］ ． 在训练阶段，分别从 ＢＣＶ、ＡＣＤＣ 和私有胰腺肿瘤数据

集的原始扫描中随机裁剪大小为、和的子卷作为输入． 损失函

数为联合使用的 Ｄｉｃｅ 损失和交叉熵损失函数．

３　 实验结果

３． １　 对比实验

本文将 ＰＤＢＦ 与目前比较先进的方法进行了比较，对比

目标网络主要以具有混合框架的医学图像分割网络为主．
在 ＢＣＶ 数据集上的分割结果如表 １ 所示． 其中，Ｓｗｉｎ⁃

Ｕｎｅｔ、ＴｒａｎｓＵＮｅｔ、ＬｅＶｉＴ⁃Ｕｎｅｔ、ＭＩＳＳＦｏｒｍｅｒ、ｎｎＦｏｒｍｅｒ、ＵＮＥＴＲ
和 ＰＨＴｒａｎｓ 的分割结果引用自原论文，见参考文献［１１，１３，
１７，３１⁃３４］，其余网络的分割结果引用自参考文献［１７］ ． 进一

步的，Ｓｗｉｎ⁃Ｕｎｅｔ、ＴｒａｎｓＵＮｅｔ、ＬｅＶｉＴ⁃Ｕｎｅｔ 和 ｎｎＦｏｒｍｅｒ 的分割

结果使用了在 ＩｍａｇｅＮｅｔ 上预训练的权重初始化网络，而其余

网络则在 ＢＣＶ 数据集上从头开始训练．
本文所提出的网络模型 ＰＤＢＦ 在多项评估指标上表现优

异，达到了最佳或接近最佳的水平，充分展现了其在医学图像

分割任务中的显著优势． 在总体分割性能方面，ＰＤＢＦ 在多器

官分割平均 ＤＳＣ 和 ＨＤ 两个指标上均取得了最优异的效果，
分别为 ８９． ２１％ （ＤＳＣ↑）和 ８． １４（ＨＤ↓） ． 比之前的最佳模型

在平均 ＤＳＣ 上高出 ０． ６６％ ，在 ＨＤ９５ 上降低了 ０． ５４，这证明

了本文所提出的 ＰＤＢＦ 网络在总体分割精度上具有更优的性

能，且网络能够有效减少边界误差，对复杂解剖结构的捕获和

分割更为准确． 在器官级别的性能对比中，ＰＤＢＦ 在脾脏

（Ｓｐｌ）和胆囊（Ｇａｌ）等关键器官的分割中均达到了最高的

Ｄｉｃｅ 系数，证明了网络对器官形状和解剖特征的高效捕捉能

力． 此外，在较难分割的小器官胰腺（Ｐａｎ）上，ＰＤＢＦ 的性能也

优于其余网络模型，展现了 ＰＤＢＦ 对低对比度和小目标的良

好适应性．
在 ＡＣＤＣ 数据集上的分割结果如表 ２ 所示． 其中 Ｓｗｉｎ⁃

Ｕｎｅｔ、ＴｒａｎｓＵＮｅｔ、ＬｅＶｉＴ⁃Ｕｎｅｔ、ＭＩＳＳＦｏｒｍｅｒ、ｎｎＵ⁃Ｎｅｔ、ＰＨＴｒａｎｓ
和 ＵＮＥＴＲ 的分割结果引用自原论文，见参考文献［１１，１３，
１７，３０⁃３２，３４］，除 ＭＳ⁃Ｄｕａｌ 外的其余网络分割结果引用自参

１７９２１２ 期　 　 　 　 　 　 　 余辰婷 等：并行双分支融合网络及其在医学图像分割中的应用 　 　



考文献［１７］ ． 进一步的，Ｓｗｉｎ⁃Ｕｎｅｔ、ＴｒａｎｓＵＮｅｔ、ＬｅＶｉＴ⁃Ｕｎｅｔ 和 ｎｎＦｏｒｍｅｒ 使用了在 ＩｍａｇｅＮｅｔ 上预训练的权重初始化网络，而
表 １　 ＢＣＶ 数据集分割结果

Ｔａｂｌｅ １　 Ｓｅｇｍｅｎｔａｔｉｏｎ ｒｅｓｕｌｔｓ ｏｎ ＢＣＶ ｄａｔａｓｅｔ
Ｍｅｔｈｏｄｓ ＤＳＣ↑（％ ） ＨＤ９５↓（ｍｍ） Ａｏｔ（％ ） Ｇａｌ（％ ） Ｋｉｄ（Ｌ）（％ ） Ｋｉｄ（Ｒ）（％ ） Ｌｉｖ（％ ） Ｐａｎ（％ ） Ｓｐｌ（％ ） Ｓｔｏ（％ ）

Ｓｗｉｎ⁃Ｕｎｅｔ∗［３１］ ７９． １３ ２１． ５５ ８５． ４７ ６６． ５３ ８３． ２８ ７９． ６１ ９４． ２９ ５６． ５８ ９０． ６６ ７６． ６
ＴｒａｎｓＵＮｅｔ∗［１１］ ７７． ４８ ３１． ６９ ８７． ２３ ６３． １３ ８１． ８７ ７７． ０２ ９４． ０８ ５５． ８６ ８５． ０８ ７５． ６２
ＬｅＶｉＴ⁃Ｕｎｅｔ∗［３２］ ７８． ５３ １６． ８４ ８７． ３３ ６２． ２３ ８４． ６１ ８０． ２５ ９３． １１ ５９． ０７ ８８． ８６ ７２． ７６
ＭＩＳＳＦｏｒｍｅｒ［３４］ ８１． ９６ １８． ２０ ８６． ９９ ６８． ６５ ８５． ２１ ８２． ００ ９４． ４１ ６５． ６７ ９１． ９２ ８０． ８１
ＣｏＴｒ［１４］ ８６． ３３ １２． ６３ ９２． １０ ８１． ４７ ８５． ３３ ８６． ４１ ９６． ８７ ８０． ２０ ９２． ２１ ７６． ０８
ｎｎＦｏｒｍｅｒ∗［３３］ ８６． ４５ １４． ６３ ８９． ０６ ７８． １９ ８７． ５３ ８７． ０９ ９５． ４３ ８１． ９２ ８９． ８４ ８２． ５８
ｎｎＵ⁃Ｎｅｔ［３０］ ８７． ７５ ９． ８３ ９２． ８３ ８０． ６６ ８４． ８６ ８９． ７８ ９７． １７ ８２． ００ ９２． ３９ ８２． ３１
ＵＮＥＴＲ［１３］ ７９． ４２ ２９． ２７ ８８． ９２ ６９． ８０ ８１． ３８ ７９． ７１ ９４． ２８ ５８． ９３ ８６． １４ ７６． ２２
Ｓｗｉｎ⁃ＵＮＥＴＲ［３５］ ８５． ７８ １７． ７５ ９２． ７８ ７６． ５５ ８５． ２５ ８９． １２ ９６． ９１ ７７． ２２ ８８． ７０ ７９． ７２
ＰＨＴｒａｎｓ［１７］ ８８． ５５ ８． ６８ ９２． ５４ ８０． ８９ ８５． ２５ ９１． ３０ ９７． ０４ ８３． ４２ ９１． ２０ ８６． ７５
ＰＤＢＦ ８９． ２１ ８． １４ ９２． ７９ ８３． ３２ ８７． ７２ ８８． ７４ ９６． ８３ ８３． ６１ ９５． ４８ ８５． １６
注：标∗处表示网络使用了 ＩｍａｇｅＮｅｔ 进行预训练

其余网络则在 ＡＣＤＣ 数据集上从头开始训练．
在该数据集上，ＰＤＦＢ 在平均 ＤＳＣ 以及不同解剖结构的

分割指标（ＲＶ、ＭＹＯ 和 ＬＶ）上均取得了最优的分割结果，其
平均 Ｄｉｃｅ 系数达到了 ９１． ９７％ ，超过了所有对比方法，显示了

表 ２　 ＡＣＤＣ 数据集分割结果

Ｔａｂｌｅ ２　 Ｓｅｇｍｅｎｔａｔｉｏｎ ｒｅｓｕｌｔｓ ｏｎ ＡＣＤＣ ｄａｔａｓｅｔ
Ｍｅｔｈｏｄｓ ＤＳＣ↑（％ ） ＲＶ（％ ） ＭＹＯ（％ ） ＬＶ（％ ）

Ｓｗｉｎ⁃Ｕｎｅｔ∗［３１］ ９０． ００ ８８． ５５ ８５． ６２ ９５． ８３
ＴｒａｎｓＵＮｅｔ∗［１１］ ８９． ７１ ８８． ８６ ８４． ５３ ９５． ７３
ＬｅＶｉＴ⁃Ｕｎｅｔ∗［３２］ ９０． ３２ ８９． ５５ ８７． ６４ ９３． ７６
ＭＩＳＳＦｏｒｍｅｒ［３４］ ９０． ８６ ８９． ５５ ８８． ０４ ９４． ９９
ｎｎＦｏｒｍｅｒ∗［３３］ ９１． ６２ ９０． ２７ ８９． ２３ ９５． ３６
ｎｎＵ⁃Ｎｅｔ［３０］ ９１． ３６ ９０． １１ ８８． ７５ ９５． ２３
ＵＮＥＴＲ［１３］ ８８． ６１ ８５． ２９ ８６． ５２ ９４． ０２
ＭＳ⁃Ｄｕａｌ［１８］ ９１． １４ ８９． １６ ８９． ７４ ９４． ５１
ＰＨＴｒａｎｓ［１７］ ９１． ７９ ９０． １３ ８９． ４８ ９５． ７６
ＰＤＢＦ ９１． ９７ ９０． ２１ ８９． ８６ ９５． ８３

注：标∗处表示网络使用了 ＩｍａｇｅＮｅｔ 进行预训练

其卓越的全局分割能力． 对于较复杂结构的分割任务右心室

（ＲＶ）和心肌（ＭＹＯ），ＰＤＢＦ 的 ＤＳＣ 评价指标分别达到了

９０． ２１％和 ８９． ８６％ ，均为所有对比方法的最高值． 这表明 ＰＤ⁃
ＢＦ 能够有效捕捉和重建复杂形状及边界信息．

表 ３　 胰腺肿瘤数据集分割结果

Ｔａｂｌｅ ３　 Ｓｅｇｍｅｎｔａｔｉｏｎ ｒｅｓｕｌｔｓ ｏｎ ｔｈｅ ｐａｎｃｒｅａｔｉｃ ｔｕｍｏｒ ｄａｔａｓｅｔ
Ｍｅｔｈｏｄｓ ＤＳＣ↑（％ ） ＨＤ９５↓（ｍｍ）

Ｓｗｉｎ⁃Ｕｎｅｔ ６７． ０３ ２９． ６８
ＴｒａｎｓＵＮｅｔ ６３． ４９ ３５． ９７
Ｓｗｉｎ⁃ＵＮＥＴＲ ７３． １８ ２５． ２６
ＣｏＴｒ ７４． ２９ １６． ４２
ｎｎＵ⁃Ｎｅｔ ７２． ８９ ３１． ２７
ＵＮＥＴＲ ７１． １８ ３８． ５１
ｎｎＦｏｒｍｅｒ ７４． ３６ １５． ９９
ＭＳ⁃Ｄｕａｌ ７１． ９４ ２８． ５
ＰＨＴｒａｎｓ ７３． ２２ ２９． １７
ＰＤＢＦ ７６． ７６ １３． ３９

　 　 在私有胰腺肿瘤数据集上的分割结果如表 ３ 所示，所有

网络都没有使用预训练权重．
在 分割精度方面，ＰＤＢＦ的ＤＳＣ评价指标达到了７６． ７６％ ，

相比于其它网络模型具有明显提升． 在分割边界准确性方面，
ＰＤＢＦ 的 ＨＤ９５ 评价指标降低至 １３． ３９，相比其他网络模型展

现出更加卓越的边界拟合能力． 这表明，对于大小和形状多

变、位置复杂的小型待分割目标，ＰＤＢＦ 在提升全局分割质量

的同时，能够更好地捕捉目标边界的精细细节，从而适应医学

图像中复杂且多样的形态特征．
针对以上 ３ 个不同数据集的分割结果对比表明，本文所

提出的 ＰＤＢＦ 网络可以与其他已提出的先进方法竞争．
３． ２　 定性评价

图 ４ 展示了在 ＢＣＶ 数据集上，Ｓｗｉｎ⁃ＵＮＥＴＲ、ｎｎＦｏｒｍｅｒ、
ＰＨＴｒａｎｓ 和本文所提出的 ＰＤＢＦ 网络的分割结果与原始标签

的定性可视化对比． ＰＤＢＦ 在胰腺和胆囊等小器官上预测的

边界更加平滑，漏分割现象更少；在肝脏等大器官上，其预测

轮廓也更加完整．

图 ４　 基于 ＢＣＶ 数据集的可视化对比

Ｆｉｇ． ４　 Ｖｉｓｕａｌ ｃｏｍｐａｒｉｓｏｎ ｂａｓｅｄ ｏｎ ＢＣＶ ｄａｔａｓｅｔ

　 　 图 ５ 展示了在 ＡＣＤＣ 数据集上，ｎｎＦｏｒｍｅｒ、ＰＨＴｒａｎｓ 和

ＰＤＢＦ 的分割结果与原始标签的对比． 通过可视化对比可以

看出，ＰＤＢＦ 在所有分割目标（ＬＶ、ＲＶ、ＭＹＯ）上均展现出更

好的边界细节保留能力和复杂形状适应性． 尤其在边界模糊

或形态复杂的区域，ＰＤＢＦ 相对更少存在过分割或欠分割

现象．

２７９２ 　 　 　 　 　 　 小　 型　 微　 型　 计　 算　 机　 系　 统 　 　 　 　 　 　 ２０２５ 年



图 ６ 展示了在胰腺肿瘤数据集上，Ｓｗｉｎ⁃ＵＮＥＴＲ、ｎｎＵ⁃
Ｎｅｔ、ＰＨＴｒａｎｓ 和 ＰＤＢＦ 的分割结果与原始标签的对比． ＰＤＢＦ
网络的分割结果边界更加贴近真实标签，对肿瘤区域的识别

图 ５　 基于 ＡＣＤＣ 数据集的可视化对比

Ｆｉｇ． ５　 Ｖｉｓｕａｌ ｃｏｍｐａｒｉｓｏｎ ｂａｓｅｄ ｏｎ ＡＣＤＣ ｄａｔａｓｅｔ

图 ６　 基于胰腺肿瘤数据集的可视化对比

Ｆｉｇ． ６　 Ｖｉｓｕａｌ ｃｏｍｐａｒｉｓｏｎ ｂａｓｅｄ ｏｎ ｔｈｅ ｐａｎｃｒｅａｔｉｃ ｔｕｍｏｒ ｄａｔａｓｅｔ

遗漏更少．

３． ３　 消融实验

基于 ＢＣＶ 数据集，本文以 ３Ｄ Ｓｗｉｎ⁃Ｕｎｅｔ 网络作为基线

网络． 在此基础上本文逐步整合了 ＰＤＢＦ 的各组成部件进行

消融实验，以探索不同的组成部分对网络分割性能的影响．
表 ４ 给出了结构消融实验的定量结果，后一步的额外添

加都将在前一步的操作基础上进行． “ ＋ Ｓｔａｃｋｅｄ Ｃｏｎｖ Ｍｏｄ⁃
ｕｌｅ”代表在网络的浅层使用堆叠卷积模块替代原本的跨行卷

积操作． “ ＋ ＢｉＦｕｓｉｏｎ Ｍｏｄｕｌｅ ｗ ／ ｏ Ｂｉｄｉｒｅｃｔｉｏｎａｌ Ａｔｔｅｎｔｉｏｎ Ｆｕ⁃
ｓｉｏｎ” 则表示将 ３Ｄ Ｓｗｉｎ⁃Ｕｎｅｔ 中原本的 Ｓｗｉｎ Ｔｒａｎｓｆｏｒｍｅｒ
Ｂｌｏｃｋ 替换为本文所提出的双融合模块，但仅包含深度卷积

与局部窗口的并行双分支结构而不包含分支间的双向注意力

融合． “ ＋ Ｂｉｄｉｒｅｃｔｉｏｎａｌ Ａｔｔｅｎｔｉｏｎ Ｆｕｓｉｏｎ”则表示在前一步的基

础上，继续添加空间和通道的分支间双向注意力融合，组成完

整的双融合模块． 以上的实验结果足以证明，堆叠卷积模块的

引入显著增强了网络在特征提取早期对细粒度细节的捕获能

力． 此外，使用 ＣＮＮ 与 Ｔｒａｎｓｆｏｒｍｅｒ 的并行双分支结构可以取

得比串行连接的 Ｓｗｉｎ Ｔｒａｎｓｆｏｒｍｅｒ Ｂｌｏｃｋ 更好的分割效果，分
支间的双向注意力融合进一步优化了特征的信息表达，使网

络获得更好的性能提升． 与基线网络 ３Ｄ Ｓｗｉｎ⁃Ｕｎｅｔ 相比，本
文所提出的 ＰＤＢＦ 在平均 ＤＳＣ 上提升了 ５． ５６％ ，在 ＨＤ 指标

上降低了 １０． ５． 结果表明，使用并行结构及分支间的双向注

意力融合来进行特征的信息提取融合是有效的．
本文还增加了并行双分支注意力融合块中局部窗口和移

动窗口之间的对比研究． “ ＋ ｓｈｉｆｔｅｄ ｗｉｎｄｏｗｓ”表示在原并行

双分支注意力融合块的基础上，参考 Ｓｗｉｎ Ｔｒａｎｓｆｏｒｍｅｒ Ｂｌｏｃｋ
结构，将分支中的局部窗口自注意力修改为移动窗口自注意

力． 结果显示，增加移动窗口结构无法提供比目前的局部窗口

自注意力更优异的改进性能，这说明了本文的并行结构可以

提供充足的跨窗口信息聚合． 考虑到增加移动窗口所需要的

额外计算量，出于平衡计算消耗和分割性能之间的平衡，本文

选择不保留移动窗口结构．
表 ４　 ＰＤＢＦ 网络架构的消融研究

Ｔａｂｌｅ ４　 Ａｂｌａｔｉｏｎ ｓｔｕｄｙ ｏｎ ｔｈｅ ａｒｃｈｉｔｅｃｔｕｒｅ ｏｆ ＰＤＢＦ
Ｍｅｔｈｏｄｓ ＤＳＣ↑（％ ）ＨＤ９５↓（ｍｍ）Ａｏｔ（％ ） Ｇａｌ（％ ） Ｋｉｄ（Ｌ）（％ ） Ｋｉｄ（Ｒ）（％ ） Ｌｉｖ（％ ） Ｐａｎ（％ ） Ｓｐｌ（％ ） Ｓｔｏ（％ ）

３Ｄ Ｓｗｉｎ⁃Ｕｎｅｔ ８３． ６５ １８． ６４ ８８． ０７ ７３． ０３ ８３． ２６ ８５． ５４ ９４． ８４ ７８． １８ ８７． ０３ ７９． ２８
＋ Ｓｔａｃｋｅｄ Ｃｏｎｖ Ｍｏｄｕｌｅ ８６． １４ １６． ４２ ９１． ８３ ７９． ９０ ８６． ０４ ８６． ９７ ９６． ３２ ７６． ３１ ９０． ５４ ８１． １９
＋ ＢｉＦｕｓｉｏｎ Ｍｏｄｕｌｅ ｗ ／ ｏ Ｂｉｄｉ⁃
ｒｅｃｔｉｏｎａｌ Ａｔｔｅｎｔｉｏｎ Ｆｕｓｉｏｎ ８８． ０８ １１． ７９ ９３． ５ ８３． １６ ８６． ５１ ８７． ８９ ９７． ７ ８３． ７５ ８９． ３５ ８２． ７４

＋ Ｂｉｄｉｒｅｃｔｉｏｎａｌ Ａｔｔｅｎｔｉｏｎ Ｆｕｓｉｏｎ ８９． ２１ ８． １４ ９２． ７９ ８３． ３２ ８７． ７２ ８８． ７４ ９６． ８３ ８３． ６１ ９５． ４８ ８５． １６
＋ ｓｈｉｆｔｅｄ ｗｉｎｄｏｗｓ ８９． ２３ ８． ０９ ９３． ２３ ８２． ９９ ８６． ３９ ８８． ８１ ９７． ５８ ８３． ７４ ９５． ２９ ８５． ８４

表 ５　 双融合模块深度的消融研究

Ｔａｂｌｅ ５　 Ａｂｌａｔｉｏｎ ｓｔｕｄｙ ｏｎ ｔｈｅ ｄｅｐｔｈ ｏｆ ｔｈｅ ＢｉＦｕｓｉｏｎ ｍｏｄｕｌｅ
ｄｅｐｔｈ ｈｅａｄｓ ｏｆ Ｍｕｌｔｉ⁃ｈｅａｄｅｄ

Ｓｅｌｆ⁃ａｔｔｅｎｔｉｏｎ ＤＳＣ↑（％ ）ＨＤ９５↓（ｍｍ）Ａｏｔ（％ ） Ｇａｌ（％ ） Ｋｉｄ（Ｌ）（％ ） Ｋｉｄ（Ｒ）（％ ） Ｌｉｖ（％ ） Ｐａｎ（％ ） Ｓｐｌ（％ ） Ｓｔｏ（％ ）

ｄｅｐｔｈ ＝ ２［６，１２］ ８８． ５５ ９． ５９ ９３． ０２ ８０． ５７ ８７． ７９ ８８． ０４ ９７． ３２ ８３． ７１ ９１． ８７ ８６． ０５
ｄｅｐｔｈ ＝ ３［３，６，１２］ ８８． ６８ ８． ５１ ９２． ５２ ８１． ８６ ８７． ２８ ８８． ５１ ９６． ０６ ８４． ２２ ９２． ３７ ８６． ６３
ｄｅｐｔｈ ＝ ４［３，６，１２，１２］ ８９． ２１ ８． １４ ９２． ７９ ８３． ３２ ８７． ７２ ８８． ７４ ９６． ８３ ８３． ６１ ９５． ４８ ８５． １６
ｄｅｐｔｈ ＝ ５［３，６，６，１２，１２］ ８７． ６２ １０． ５９ ９２． ８４ ７９． ２５ ８６． １７ ８９． １７ ９６． ７９ ８２． ３３ ９３． ０９ ８１． ３

　 　 表 ５ 验证了不同双融合模块深度对分割性能的影响．
“ｄｅｐｔｈ”表示双融合模块的深度，即全部并行双分支注意力融

合块的层数，“ｈｅａｄｓ ｏｆ Ｍｕｌｔｉ⁃ｈｅａｄｅｄ Ｓｅｌｆ⁃ａｔｔｅｎｔｉｏｎ”表示对应

层中双分支融合块内的多头自注意力的头数． 随着网络深度

的增加，数据特征变得更加复杂． 适当增加多头自注意力机制

的头数可以更高效地并行处理信息，允许网络在每一层内部

３７９２１２ 期　 　 　 　 　 　 　 余辰婷 等：并行双分支融合网络及其在医学图像分割中的应用 　 　



执行多样化的信息处理策略． 每个头关注输入数据的不同子

空间，从而更细致地分析数据，增强每一层的特征提取能力，
增加模型的灵活性． 因此本文设置多头自注意力机制的头数

随网络深度而递增． 结果表明，随着双融合模块深度的适度增

加，分割性能随之增强． 当双融合模块的深度为 ４、多头自注

意头数设置为［３，６，１２，１２］时分割性能最佳．
表 ６　 多头自注意力头数的消融研究

Ｔａｂｌｅ ６　 Ａｂｌａｔｉｏｎ ｓｔｕｄｙ ｏｎ ｔｈｅ ｎｕｍｂｅｒ ｏｆ ｈｅａｄｓ ｉｎ ｔｈｅ Ｍｕｌｔｉ⁃ｈｅａｄｅｄ Ｓｅｌｆ⁃ａｔｔｅｎｔｉｏｎ
ｈｅａｄｓ ｏｆ Ｍｕｌｔｉ⁃ｈｅａｄｅｄ

Ｓｅｌｆ⁃ａｔｔｅｎｔｉｏｎ ＤＳＣ↑（％ ）ＨＤ９５↓（ｍｍ）Ａｏｔ（％ ） Ｇａｌ（％ ） Ｋｉｄ（Ｌ）（％ ） Ｋｉｄ（Ｒ）（％ ） Ｌｉｖ（％ ） Ｐａｎ（％ ） Ｓｐｌ（％ ） Ｓｔｏ（％ ）

［３，６，６，１２］ ８８． ８２ ８． ３１ ９２． ９４ ８１． ３９ ８７． ７３ ９０． ０２ ９７． ３１ ８２． ７６ ９５． ５ ８２． ８８
［３，６，１２，１２］ ８９． ２１ ８． １４ ９２． ７９ ８３． ３２ ８７． ７２ ８８． ７４ ９６． ８３ ８３． ６１ ９５． ４８ ８５． １６
［３，６，１２，２４］ ８８． ３６ １０． ７４ ９２． ８２ ８２． ４ ８５． ５７ ８８． ２４ ９６． ９８ ８３． １５ ９２． ４９ ８５． ２５

　 　 本文在双融合模块深度的基础上进一步对比了不同的多

头自注意力头数配置方案对分割结果的影响． 表 ６ 中“ｈｅａｄｓ
ｏｆ Ｍｕｌｔｉ⁃ｈｅａｄｅｄ Ｓｅｌｆ⁃ａｔｔｅｎｔｉｏｎ”表示当双融合模块深度为 ４ 时，
各层并行双分支注意力融合块中的多头自注意力的不同头数

对比． 根据表 ６ 的实验结果，当多头自注意头数设置为［３，６，
１２，１２］时网络取得了最好的性能．

４　 结　 论

　 　 本文提出了一种基于局部窗口自注意力和深度卷积的并

行双分支融合架构（ＰＤＢＦ），用于医学图像的分割． 通过耦合

局部窗口和深度卷积的并行设计，ＰＤＢＦ 能够有效地扩展接

受域，而无需使用移动窗口． 双向的注意力融合则增强了两个

分支在通道和空间维度上的建模能力． 在 ＢＣＶ、ＡＣＤＣ 和私

有数据集上进行的大量实验表明，本文提出的方法优于其他

先进的方法． 作为一种通用架构，ＰＤＢＦ 具有高度的灵活性．
根据不同的目标任务，两个分支可以灵活替换为更适合的卷

积和 Ｔｒａｎｓｆｏｒｍｅｒ 模块，为下游医学图像任务带来了新的可

能性．
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