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摘　 要： 为解决网络入侵检测模型训练数据不平衡和泛化能力不足导致防御效果差的问题，本文提出一种基于扩散模型的网

络入侵检测增强方法． 通过改进现有检测过程和扩散模型，使其适用于复杂多样的入侵检测数据，该方法能够合成高质量训练

数据和多样化对抗样本，从增强训练数据和增强对抗样本两方面提升入侵检测模型的性能． 在入侵检测数据集上的实验表明，
相比业界常用的基于变分自编码器和基于对抗生成网络的数据增强方法，本文方法能够获得更好的数据保真度和多样性，在缓

解数据不平衡的同时提高检测性能． 通过本文方法增强对抗样本后，能够生成更加多样化的对抗样本，使得扩散对抗训练效果

优于对抗训练，增强入侵检测系统的防御能力．
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０　 引　 言

随着互联网技术的快速发展，网络安全问题日益突出． 网
络入侵检测系统（ Ｉｎｔｒｕｓｉｏｎ Ｄｅｔｅｃｔｉｏｎ Ｓｙｓｔｅｍ，ＩＤＳ）作为保障网

络安全的重要手段，监测并识别潜在安全威胁，保护计算机系

统免受攻击． 然而，在实际应用中，入侵检测系统仍面临诸多

挑战． 网络中的正常流量与异常流量通常不均衡，异常流量中

各个攻击类别的流量也不均衡，导致检测模型可能倾向于预

测多数类，而对少数类的误判率较高． 此外，入侵检测系统需

要具有良好的泛化性，才能够准确识别未见过的攻击样本． 基
于机器学习的检测模型虽然具有较强的学习能力，但仍存在

泛化性不足的问题．
针对网络流量数据不均衡和入侵检测模型泛化能力差等

问题，研究人员陆续提出一些解决办法，如：通过合成少数类

的过采样技术（Ｓｙｎｔｈｅｔｉｃ Ｍｉｎｏｒｉｔｙ Ｏｖｅｒ⁃Ｓａｍｐｌｉｎｇ Ｔｅｃｈｎｉｑｕｅ，

ＳＭＯＴＥ） ［１］或随机欠采样方法来处理数据不平衡问题；通过

集成学习、条件变分自编码器（Ｃｏｎｄｉｔｉｏｎａｌ Ｖａｒｉａｔｉｏｎａｌ Ａｕｔｏｅｎ⁃
ｃｏｄｅｒ，ＣＶＡＥ） ［２］或条件生成对抗网络（Ｃｏｎｄｉｔｉｏｎａｌ Ｇｅｎｅｒａｔｉｖｅ
Ａｄｖｅｒｓａｒｉａｌ Ｎｅｔｗｏｒｋ，ＣＧＡＮ） ［３］进行数据增强． 这些方法能够

取得一定效果，但仍然难以充分捕捉数据中的复杂模式，无法

有效应对不断演化的网络攻击．
为解决上述问题，本文提出一种基于扩散模型［４］ 的网络

入侵检测增强方法 （Ｄｉｆｆｕｓｉｏｎ⁃ｂａｓｅｄ Ｉｎｔｒｕｓｉｏｎ Ｄｅｔｅｃｔｉｏｎ Ｅｎ⁃
ｈａｎｃｅｍｅｎｔ，ＤＩＤＥ） ． ＤＩＤＥ 通过逐步向训练数据添加噪音，然
后学习去噪的过程来建模数据分布． 基于此，ＤＩＤＥ 能够增强

训练样本，尤其是样本较少的类别，解决样本不均衡问题．
ＤＩＤＥ 能够增强对抗样本，在保持对抗样本核心特征的同时，
引入一定程度变化，从而合成更加多样化的对抗样本集． 最终

提高模型的整体安全性． 本文的主要贡献包括：
１）对现有入侵检测过程和扩散模型进行改进，使其适用



于表格形式的网络样本，通过自适应非线性噪音调节提升表

格扩散模型的数据合成效果．
２）采用扩散模型对样本较少的类别进行虚拟数据合成，

增强训练数据集，解决数据不均衡问题． 实验验证，扩散模型

效果优于 ＣＶＡＥ 和 ＣＧＡＮ．
３）改进对抗训练方法，采用扩散模型增强对抗样本，即

基于对抗样本生成虚拟对抗样本，将对抗样本和虚拟对抗样

本一起用于对抗训练． 实验验证，扩散对抗训练效果优于仅对

抗训练．
４）改进数据预处理方法，使得预处理后的数据能够用于

扩散模型． 使用皮尔逊相关系数分析进行数据特征筛选，选择

与分类结果相关的特征，从而提升检测效果．

１　 相关工作

　 　 入侵检测模型主要采用机器学习算法． Ｎａｇａｒａｊａ［５］ 等使

用基于图论的聚类技术随机探索和分析网络流量数据，有效

识别 Ｐ２Ｐ 僵尸网络． Ｚｈａｎｇ［６］等对机器人查询流量进行研究，
构建层次结构表示数据之间的相似性或距离，通过距离度量

来识别潜在威胁． Ｃｈｅｎ［７］ 等构建最小二乘支持向量机模型，
采用优化的支持向量机分类僵尸网络流量． 这些方法仅在处

理小规模、低维度数据时表现良好． 但在实际网络环境中，存
在大量高维、非线性数据． 为此，Ｚｈａｎｇ［８］ 等提出一种结合多

尺度卷积神经网络和长短时记忆的模型． Ｋａｓｏｎｇｏ［９］ 等提出

一种缩减特征空间的方法，通过 ＸＧＢｏｏｓｔ 特征选择方法，提
升检测精度． 为解决数据不均衡问题，提高检测模型的泛化能

力，Ｌｉ［１０］等提出一种结合变分自编码器和生成对抗网络的网

络入侵检测方法，区分正常流量和异常流量． 为提高检测系统

对恶意行为的防御能力，Ｇｏｏｄｆｅｌｌｏｗ［１１］ 等提出快速梯度符号

法（Ｆａｓｔ Ｇｒａｄｉｅｎｔ Ｓｉｇｎ Ｍｅｔｈｏｄ，ＦＧＳＭ），通过计算损失函数相

对于输入数据的梯度添加微小扰动来构造对抗样本． Ｘｉａｏ［１２］

等提出基于对抗生成网络的对抗生成法（Ａｄｖｅｒｓａｒｉａｌ Ｇｅｎｅｒａ⁃
ｔｉｖｅ Ａｄｖｅｒｓａｒｉａｌ Ｎｅｔｗｏｒｋ，ＡｄｖＧＡＮ）进行对抗样本生成． 后续

研究进一步发展了这些方法，提出了多种改进算法．
总的来说，现有方法在小规模、低维度数据上性能较好，

但在大规模、高维度、特征非线性相关、存在严重不均衡的真

实网络流量上还存在一些缺陷． 尽管采用 ＣＧＡＮ、ＣＶＡＥ 等方

法进行数据增强能在一定程度上缓解数据不平衡问题，但生

成数据的保真度和多样性有限． 另外，基于 ＧＡＮ 的方法经常

遇到模式崩溃的问题，ＦＧＳＭ 对复杂模型效果不佳． 本文所用

的基于扩散的方法在训练中更加稳定，能够生成多样化高质

量的虚拟样本． 由于其渐进式去噪过程，扩散模型不容易陷入

局部最优解，能够探索更多潜在空间．

２　 研究方法

２． １　 入侵检测增强方法总体结构

基于扩散模型的网络入侵检测增强方法的总体结构如图

１ 所示，包括数据预处理、对抗样本生成、基于扩散的数据增

强、入侵检测 ４ 部分． 原始数据集首先经过预处理模块进行规

范化和特征筛选，然后通过对抗样本生成方法生成对抗样本

集． 扩散模型分别扩充预处理后的训练数据集和对抗样本集，
从而对数据集进行增强． 基于增强后的数据集，包括真实样

本、对抗样本、合成样本，对检测模型进行扩散对抗训练，获得

扩散对抗增强的入侵检测模型． 最后利用该增强检测模型进

行网络入侵检测． 本文首先改进现有扩散模型，使其适用于复

图 １　 入侵检测增强方法 ＤＩＤＥ 总体结构

Ｆｉｇ． １　 Ｏｖｅｒｖｉｅｗ ｏｆ ｔｈｅ ｉｎｔｒｕｓｉｏｎ ｄｅｔｅｃｔｉｏｎ ｅｎｈａｎｃｅｍｅｎｔ ｍｅｔｈｏｄ ＤＩＤＥ
杂多样的网络入侵数据，然后将扩散模型应用到入侵检测的

两个方面：１）增强原始数据：通过扩散模型生成与真实流量

相似的虚拟数据，扩大训练数据集，缓解数据类别不平衡问

题；２）增强对抗数据：基于已有对抗样本，通过扩散模型生成

更多样的对抗样本，增强对抗样本集，提高检测模型对未见样

本的有效性．
２． ２　 数据预处理

本文首先对原始数据集进行预处理［１３］ ，以符合扩散模型

和检测模型的要求． 本文预处理过程包括特征分类、编码、数
值归一化、特征关联分析与特征选择． 首先将数据集中整型和

浮点型的特征转换为数值类型，将类别类型转换为二进制变

量；然后对特征和标签进行编码；之后采用 ＭｉｎＭａｘＳｃａｌｅｒ 方

法将数值特征归一化到［０，１］区间；最后计算所有特征与标

签之间的皮尔逊相关系数，保留相关性较大（大于预定义阈

值）的特征． 特征选择后形成的预处理后的数据集作为真实

数据集，进行后续的对抗生成、扩散增强和入侵检测等过程．
２． ３　 对抗样本生成

本文采用 ＦＧＳＭ 方法和 ＡｄｖＧＡＮ 方法进行对抗样本生

成． 也可采用其他对抗样本生成方法． ＦＧＳＭ［１１］ 是一种基于

梯度的对抗样本生成方法． 其核心思想是在输入数据中添加

微小扰动，以最大化模型损失，从而误导检测模型的预测． 它
通过计算损失函数对输入数据的梯度，并在原始数据上加上

梯度符号乘以扰动值来生成对抗样本． ＡｄｖＧＡＮ［１２］ 对抗样本

生成方法的核心思想是通过生成器生成对抗样本，利用判别

器区分真实样本和对抗样本，通过由攻击损失、对抗损失、扰
动损失组成的联合损失函数引导生成器生成高效且难以检测

的对抗样本．
２． ４　 基于扩散的数据增强

扩散模型［４］ 是一种生成模型，通过对数据逐步加入噪

音，然后学习去噪过程来还原原始数据． 扩散模型分为两阶
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段：前向噪音引入过程（即扩散过程）和反向去噪重构过程

（即去噪过程） ． 扩散过程逐步对数据加入随机噪音，最终使

得数据变成纯噪音；去噪过程通过学习如何逐步去除噪音，恢
复原始数据分布． 扩散模型广泛应用于图像生成任务． 然而，
网络流量数据是表格数据． 普通扩散模型处理表格数据时，难
以处理数值特征与类别特征并存的混合类型数据，且其噪音

是线性或固定的，无法根据数据复杂性调节噪音，导致生成的

数据多样性和保真性不足．

２． ４． １　 基于扩散模型的表格数据生成

本文基于 ＴＡＢＳＹＮ 扩散模型［１４］ 生成表格类型数据，使
用一个结合变分自编码器（Ｖａｒｉａｔｉｏｎａｌ Ａｕｔｏｅｎｃｏｄｅｒ，ＶＡＥ）与

扩散模型的框架来生成包括数值型和类别型的混合类型表格

数据． ＴＡＢＳＹＮ 的结构［１４］如图 ２ 所示，包括 ＶＡＥ 部分和扩散

模型部分． ＶＡＥ 部分将混合类型表格数据映射到潜在空间

中，解决混合数据类型问题． 扩散模型部分由前向加噪和反向

去噪组成，在潜在空间中训练扩散模型．

图 ２　 基于扩散模型的表格数据生成

Ｆｉｇ． ２　 Ｇｅｎｅｒａｔｉｏｎ ｏｆ ｔａｂｕｌａｒ ｄａｔａ ｂｙ ｄｉｆｆｕｓｉｏｎ ｍｏｄｅｌ
　 　 对于混合类型表格数据，假设 Ｎｎｕｍ和 Ｎｃａｔ分别表示数值

列和类别列的数量，则每一行数据可表示为一个包含数值特

征和类别特征的向量 ｘ ＝ ［ ｘｎｕｍ，ｘｃａｔ］ ． 假设第 ｉ 个类别特征具

有 Ｋｉ 个候选值，则 ｘｃａｔｉ ∈｛１，…，Ｋｉ｝ ． 分词器［１４］ 首先将每列

（数值型或类别型）数据转换为 ｄ 维向量，并使用独热编码处

理类别列，即：
ｘｃａｔｉ ⇒ｘｏｈｉ ∈ＲＲ １ × Ｋｉ （１）

处理后的一行数据可表示为：

ｘ ＝ ［ｘｎｕｍ，ｘｏｈ１ ，…，ｘｏｈＮｃａｔ］∈ＲＲ Ｎｎｕｍ ＋ ∑Ｎｃａｔ
ｉ ＝ １

Ｋｉ （２）
然后对数值列应用线性变换，为类别列创建嵌入查找表：

ｙｎｕｍｉ ＝ ｘｎｕｍｉ ·ｗｎｕｍ
ｉ ＋ ｂｎｕｍ

ｉ

ｙｃａｔｉ ＝ ｘｏｈｉ ·Ｗｃａｔ
ｉ ＋ ｂｃａｔ

ｉ
{ （３）

其中，ｗｎｕｍ
ｉ ，ｂｎｕｍ

ｉ ，ｂｃａｔ
ｉ ，Ｗｃａｔ

ｉ 均为参数． 分词后每条记录可表

示为：
ｙ ＝ ［ｙｎｕｍ１ ，…，ｙｎｕｍＮｎｕｍ，ｙ

ｃａｔ
１ ，…，ｙｃａｔＮｃａｔ］∈ＲＲ Ｎ × ｄ （４）

使用编码器对每条记录编码，获得潜在变量的均值和对

数方差，利用重参数化方法获得潜在变量的嵌入信息，将其展

平为一维向量，即：
Ｚ ＝ Ｆｌａｔｔｅｎ（Ｅｎｃｏｄｅｒ（ｙ））∈ＲＲ １ × Ｎｄ （５）

将每条记录在潜在空间的一维特征向量送入扩散部分，经过

扩散过程和去噪过程［１４］ ，即：
Ｚｔ ＝ Ｚ０ ＋ σ（ ｔ）ε，ε ～ Ｎ（０，Ｉ）　 　 　 　 　 　 　 　 　 　 　 （扩散）

ｄＺｔ ＝ － ２σ̇（ ｔ）σ（ ｔ）∇Ｚｔ ｌｏｇｐ（Ｚ）ｄｔ ＋ ２σ̇（ ｔ）σ（ ｔ） ｄｗｔ（去噪）{
（６）

其中 Ｚ０ ＝ Ｚ 是输入扩散模型的初始嵌入向量，Ｚｔ 为 ｔ 时刻的

扩散输入，σｔ 为噪音，ｗｔ 是标准 Ｗｉｅｎｅｒ Ｐｒｏｃｅｓｓ 过程． 训练过

程通过去噪分数匹配方法［１５］实现：
Ｌ ＝ ＥＥ Ｚ０ ～ Ｐ（Ｚ０）ＥＥ ｔ ～ Ｐ（ ｔ）ＥＥ 􀆠 ～ Ｎ（０，Ｉ）‖􀆠θ（Ｚｔ，ｔ） － 􀆠‖２

２ （７）
其中，􀆠θ 是一个神经网络，利用扰动数据 ｘｔ 和时间 ｔ 来近似高

斯噪音，∇Ｚｔ ｌｏｇＰ（Ｚｔ） ＝ 􀆠θ（Ｚｔ，ｔ） ／ σ（ ｔ） ．
将去噪后的潜在嵌入输入解码器得到重构的特征矩阵，

其被输入连接器［１４］来重建每一列的值，即：

ｘ^ｎｕｍｉ ＝ ｙ^ｎｕｍｉ ·ｗ^ｎｕｍ
ｉ ＋ ｂ^ｎｕｍ

ｉ

ｘ^ｏｈｉ ＝ Ｓｏｆｔｍａｘ（ ｙ^ｃａｔｉ ·Ｗ^ｃａｔ
ｉ ＋ ｂ^ｃａｔ

ｉ ）{ （８）

其中 ｗ^ｎｕｍ
ｉ ，ｂ^ｎｕｍ

ｉ ，ｂ^ｃａｔ
ｉ ，Ｗ^ｃａｔ

ｉ 为连接器的参数． 最终合成的数据可

表示为：
ｘ^ ＝ ［ ｘ^ｎｕｍ１ ，…，ｘ^ｎｕｍＮｎｕｍ，ｘ^

ｏｈ
１ ，…，ｘ^ｏｈＮｃａｔ］ （９）

２． ４． ２　 自适应非线性噪音调节

尽管 ＴＡＢＳＹＮ 具有处理混合类型特征的能力，但其噪音

调节仍然采用时间线性方式，难以适应网络数据的复杂与多

样性． 因此，针对网络入侵检测中的样本多样性问题，本文提

出一种自适应非线性噪音调节机制，使得模型能够根据数据

的复杂性动态调整噪音，从而提升生成数据的质量和多样性．
本文首先引入一种基于损失的自适应噪音调节机制． 在扩散

过程中，噪音水平不是固定的线性函数，而是根据训练过程中

模型的损失动态调整． 这样，模型在训练时能够灵活地增加或

减少噪音，使生成过程更加平滑． 自适应噪音调节可表示为：
σ（ ｔ） ＝ σ０ × ｅｘｐ（ ⁃γｔ） ＋ σｍｉｎ （１０）

其中，γ 是衰减速率，ｔ 代表当前时间． 除了自适应噪音调节，
本文还引入了余弦噪音调节机制，使得噪音在扩散过程中呈

现非线性变化． 该机制允许在生成数据的中间步骤引入更多

噪音，帮助模型更好地探索潜在空间，生成出更具多样性和复

杂性的流量数据． 非线性余弦噪音调节可以表达为：

σ（ ｔ） ＝ σ０ × １ ＋ ｃｏｓ（πｔ）
２ （１１）

２． ５　 检测模型

由于卷积神经网络在检测网络异常流量方面表现出较高

的精确度和较低的错误率［１６］ ，本文采用 ＣＮＮ 模型作为入侵

检测模型． 所采用的 ＣＮＮ 模型结构为：输入层⁃卷积层⁃卷积

层⁃池化层⁃Ｄｒｏｐｏｕｔ⁃卷积层⁃卷积层⁃池化层⁃Ｄｒｏｐｏｕｔ⁃平坦层⁃
全连接层⁃输出层． 激活函数采用 ＲｅＬＵ．

３　 实验评估

３． １　 验证数据集及预处理

本文采用网络入侵检测数据集 ＵＮＳＷ⁃ＮＢ１５［１７］ 进行实
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验验证． 对于二分类任务，数据标记为“正常流量”和“攻击流

量”两大类． 对于多分类任务，攻击流量细分为 Ｆｕｚｚｅｒｓ、Ｒｅ⁃
ｃｏｎｎａｉｓｓａｎｃｅ、Ｓｈｅｌｌｃｏｄｅ、Ａｎａｌｙｓｉｓ、Ｂａｃｋｄｏｏｒｓ、ＤｏＳ、Ｅｘｐｌｏｉｔｓ、Ｇｅ⁃
ｎｅｒｉｃ、Ｗｏｒｍｓ ９ 种类型，加上正常流量（Ｎｏｒｍａｌ），共计 １０ 分

类． 各类别数据的数量差异较大，其中 Ｗｏｒｍｓ、Ｓｈｅｌｌｃｏｄｅ、Ａ⁃
ｎａｌｙｓｉｓ 和 Ｂａｃｋｄｏｏｒｓ 数据量较少，而 Ｎｏｒｍａｌ、Ｇｅｎｅｒｉｃ 和 Ｅｘ⁃
ｐｌｏｉｔｓ 数据量较多． 因此，ＵＮＳＷ⁃ＮＢ１５ 数据集中不同类别数

据存在显著不平衡，直接使用原始数据集对检测模型进行训

练精度不高，需要缓解类别不平衡问题，从而提升模型在少数

类别上的检测性能．
实验首先对训练集中的数据进行预处理． 预处理后分别

得到二分类数据集和多分类数据集． 在二分类数据集中，特征

维度由 ４２ 维降为 １４ 维，标签分为两类，０ 代表正常流量，１ 代

表攻击流量． 在多分类数据集中，特征维度由 ４２ 维降为 １９
维，标签分为 １０ 类，０ ～ ９ 依次代表 Ａｎａｌｙｓｉｓ、Ｂａｃｋｄｏｏｒｓ、ＤｏＳ、
Ｅｘｐｌｏｉｔｓ、 Ｆｕｚｚｅｒｓ、 Ｇｅｎｅｒｉｃ、 Ｎｏｒｍａｌ、 Ｒｅｃｏｎｎａｉｓｓａｎｃｅ、 Ｓｈｅｌｌｃｏｄｅ
和 Ｗｏｒｍｓ．
３． ２　 扩散模型合成数据的质量评估

对扩散模型产生的数据，从两方面进行评估．
低阶指标：采用列密度估计 （ Ｓｉｎｇｌｅ） 和成对列相关性

（Ｐａｉｒ）两种方式． 列密度估计衡量每个列的密度估计，通过比

较真实数据和合成数据的分布来评估合成数据的质量． 成对

列相关性衡量列之间的线性相关性，比较真实数据和合成数

据的列之间的相关性，以评估生成模型是否能够捕捉到列之

间的关系． 质量评分（Ｓｃｏｒｅ）综合这两个指标给出生成样本

质量．
高阶指标：为避免生成模型仅学习单个列的独立概率密

度，而非所有列的联合概率密度，采用 Ａｌａａ 等［１８］ 提出的 α⁃
Ｐｒｅｃｉｓｉｏｎ 和 β⁃Ｒｅｃａｌｌ 衡量合成数据的整体保真度和多样性．
α⁃Ｐｒｅｃｉｓｉｏｎ 用于评估合成数据的整体保真度，即每个生成样

本是否来源于真实数据分布． β⁃Ｒｅｃａｌｌ 用于评估合成数据的

多样性，即合成数据是否能够覆盖真实数据的整体分布．

表 １　 二分类合成数据质量评估

Ｔａｂｌｅ １　 Ｅｖａｌｕａｔｉｏｎ ｏｆ ｓｙｎｔｈｅｔｉｃｄａｔａ ｑｕａｌｉｔｙ
ｆｏｒ ｂｉｎａｒｙ ｃｌａｓｓｉｆｉｃａｔｉｏｎ

Ｍｅｔｈｏｄ Ｓｉｎｇｌｅ Ｐａｉｒ Ｓｃｏｒｅ α⁃Ｐｒｅｃｉｓｉｏｎ β⁃Ｒｅｃａｌｌ
ＣＧＡＮ ３０． ２％ ５７． １％ ４３． ７％ ０． ４６５ ０． ０７９
ＣＶＡＥ ２８． ９％ ６１． ６％ ４５． ３％ ０． ５０２ ０． ０８０
ＴＡＢＳＹＮ ９８． ５％ ９７． ８％ ９８． １％ ０． ９７５ ０． ６６２
Ｏｕｒｓ ９９． ５％ ９９． ９％ ９９． ７％ ０． ９９６ ０． ７０１

表 ２　 多分类合成数据质量评估

Ｔａｂｌｅ ２　 Ｅｖａｌｕａｔｉｏｎ ｏｆ ｓｙｎｔｈｅｔｉｃｄａｔａ ｑｕａｌｉｔｙ
ｆｏｒ ｍｕｌｔｉｐｌｅ ｃｌａｓｓｉｆｉｃａｔｉｏｎ

Ｍｅｔｈｏｄ Ｓｉｎｇｌｅ Ｐａｉｒ Ｓｃｏｒｅ α⁃Ｐｒｅｃｉｓｉｏｎ β⁃Ｒｅｃａｌｌ
ＣＧＡＮ ２６． ４％ ４６． ３％ ４４． ４％ ０． ０３６ ０． ０００
ＣＶＡＥ ２１． ４％ ７１． １％ ４６． ２％ ０． ０２７ ０． ０００
ＴＡＢＳＹＮ ９７． ４％ ９６． ８％ ９７． １％ ０． ９７４ ０． ４７７
Ｏｕｒｓ ９９． ４％ ９８． ８％ ９９． １％ ０． ９９４ ０． ５０９

　 　 二分类数据集和多分类数据集的质量评估结果分别显示

在表 １ 和表 ２ 中． 扩散模型合成的数据质量优于业界现有方

法 ＣＧＡＮ［３］和 ＣＶＡＥ［２］合成的数据质量． 由于采用自适应非

线性噪音调节，文本方法优于 ＴＡＢＳＹＮ［１４］ ．
３． ３　 扩散增强后的检测效果

二分类训练集中，正常流量样本数为 ５６０００，攻击流量样

本数为 １１９３４１． 为缓解数据类别不平衡问题，采用前述扩散

模型生成 ６３３４１ 条正常流量样本． 为验证扩散增强的效果，分
别基于原始训练集和扩散增强训练集，训练二分类检测模型，
并使用原始测试集来评估效果． 检测结果如表 ３ 所示． 对于二

分类任务，采用增强数据集训练的检测模型总体上性能优于

原始数据集． 增强后检测模型的总体准确率提升 ４． ９％ ，精确

率提升 ２． ３％ ，召回率提升 ４． ７％ ．

表 ３　 二分类检测模型的扩散增强效果

Ｔａｂｌｅ ３　 Ｅｎｈａｎｃｅｍｅｎｔ ｅｆｆｅｃｔ ｏｆ ｂｉｎａｒｙ ｃｌａｓｓｉｆｉｃａｔｉｏｎ ｂｙ ｄｉｆｆｕｓｉｏｎ
指标 数据集 正常 攻击 总体 总提升

样本量
原始 ５６０００ １１９３４１ １７５３４１

扩散增强 ６３３４１ ０ ６３３４１
－

Ａｃｃｕｒａｃｙ
原始 ０． ７０６ ０． ９９０ ０． ８５５

扩散增强 ０． ８１２ ０． ９７９ ０． ９０４
↑４． ９％

Ｐｒｅｃｉｓｉｏｎ
原始 ０． ９８４ ０． ８０５ ０． ８９４

扩散增强 ０． ９９０ ０． ８６４ ０． ９１７
↑２． ３％

Ｒｅｃａｌｌ
原始 ０． ７０６ ０． ９９０ ０． ８４８

扩散增强 ０． ８１２ ０． ９７９ ０． ８９５
↑４． ７％

　 　 多分类训练集中，数据类别严重不均衡． Ａｎａｌｙｓｉｓ 样本数

为 ２０００，Ｂａｃｋｄｏｏｒ 样本数为 １７４６，ＤｏＳ 样本数为 １２２６４，Ｅｘ⁃
ｐｌｏｉｔｓ 样本数为 ３３３９３，Ｆｕｚｚｅｒｓ 样本数为 １８１８４，Ｇｅｎｅｒｉｃ 样本

数为 ４００００，Ｎｏｒｍａｌ 样本数为 ５６０００，Ｒｅｃｏｎｎａｉｓｓａｎｃｅ 样本数为

１０４９１，Ｓｈｅｌｌｃｏｄｅ 样本数为 １１３３，Ｗｏｒｍｓ 样本数为 １３０． 为缓解

数据类别不平衡问题，对于样本量较少的类别 Ｂａｃｋｄｏｏｒ、
Ｄｏｓ、 Ｆｕｚｚｅｒｓ、 Ｒｅｃｏｎｎａｉｓｓａｎｃｅ、 Ｓｈｅｌｌｃｏｄｅ、 Ｗｏｒｍｓ 分 别 生 成

６０００、１２０００、２００００、２００００、４０００、３００ 条样本． 为验证扩散增强

对于多分类的效果，分别基于原始训练集和扩散增强训练集，
训练多分类检测模型，并使用原始测试集评估效果． 检测结果

如表 ４ 所示． 对于多分类任务，使用扩散增强数据集训练的检

测模型总体性能上优于原始数据集． 增强后检测模型的总体

准确率提升 １． ５％ ，精确率提升 ０． ９％ ，召回率提升 ４． ９％ ． 对
于增 加 了 样 本 的 Ｂａｃｋｄｏｏｒ、 Ｄｏｓ、 Ｆｕｚｚｅｒｓ、 Ｒｅｃｏｎｎａｉｓｓａｎｃｅ、
Ｓｈｅｌｌｃｏｄｅ 和 Ｗｏｒｍｓ 类别，检测指标均有提升． 扩散模型数据

增强能提升检测模型的整体性能和数据量较少类别的检测能

力，在处理不平衡数据时表现出有效性．
３． ４　 扩散对抗增强后的检测效果

为评估扩散模型对对抗样本增强的有效性，本文采用

ＦＧＳＭ 和 ＡｄｖＧＡＮ 生成对抗样本，然后通过扩散模型增强对

抗样本集． 首先采用 ＦＧＳＭ 和 ＡｄｖＧＡＮ 对二分类检测模型进

行攻击（即使用扰动测试集进行测试），然后使用对抗训练进

行防御，之后使用扩散对抗训练进行防御． 对抗训练表示检测

模型在训练集和扰动训练集上训练后，在扰动测试集上检测．
扩散对抗训练表示检测模型在训练集、扰动训练集以及扩散

扰动训练集上训练后，在扰动测试集上检测． 二分类检测模型

的准确率如表 ５ 所示． 总体准确率从 ＦＧＳＭ 对抗训练的０． ７７５
提升到扩散对抗训练的 ０． ８７８，从 ＡｄｖＧＡＮ 对抗训练的 ０． ８４６
提升到扩散对抗训练的 ０． ８７３． 因此，扩散对抗训练的防御效

９７９２１２ 期　 　 　 　 　 　 　 周　 瑞 等：利用扩散模型的网络入侵检测增强方法 　 　



果优于对抗训练，使用扩散模型增强对抗样本能提升二分类 检测模型的防御能力．
表 ４　 多分类检测模型的扩散增强效果

Ｔａｂｌｅ ４　 Ｅｎｈａｎｃｅｍｅｎｔ ｅｆｆｅｃｔ ｏｆ ｍｕｌｔｉｐｌｅ ｃｌａｓｓｉｆｉｃａｔｉｏｎ ｂｙ ｄｉｆｆｕｓｉｏｎ

指标 数据集 Ａｎａｌｙｓｉｓ Ｂａｃｋｄｏｏｒ Ｄｏｓ Ｅｘｐｌｏｉｔｓ Ｆｕｚｚｅｒｓ Ｇｅｎｅｒｉｃ Ｎｏｒｍａｌ Ｒｅｃｏｎｎ
ａｉｓｓａｎｃｅ Ｓｈｅｌｌｃｏｄｅ Ｗｏｒｍｓ 总体 总提升

样本量
原始 ２０００ １７４６ １２２６４ ３３３９３ １８１８４ ４００００ ５６０００ １０４９１ １１３３ １３０ １７５３４１

扩散增强 　 ０ ６０００ １２０００ 　 ０ ２００００ 　 ０ 　 ０ ２００００ ４０００ ３００ ６２３００
⁃

Ａｃｃｕｒａｃｙ
原始 ０． ０００ ０． ０１４ ０． ０４７ ０． ９３４ ０． ５３９ ０． ９６６ ０． ７５１ ０． ７８６ ０． ５２７ ０． １１４ ０． ７６３

扩散增强 ０． ０００ ０． ２９２ ０． ０６０ ０． ９１８ ０． ６１６ ０． ９６５ ０． ７７６ ０． ８３４ ０． ６２２ ０． １１４ ０． ７７８
↑１． ５％

Ｐｒｅｃｉｓｉｏｎ
原始 ０． ０００ ０． １７４ ０． ４８２ ０． ５４５ ０． ２９５ ０． ９９７ ０． ９４４ ０． ８７４ ０． ３６１ ０． ５５６ ０． ５２３

扩散增强 ０． ０００ ０． ３５４ ０． ４９０ ０． ５７７ ０． ３４０ ０． ９９８ ０． ９５７ ０． ８２７ ０． ３８２ ０． ７１４ ０． ５３２
↑０． ９％

Ｒｅｃａｌｌ
原始 ０． ０００ ０． ０１４ ０． ０４７ ０． ９３４ ０． ５３９ ０． ９６６ ０． ７５１ ０． ７８６ ０． ５２７ ０． １１４ ０． ４６７

扩散增强 ０． ０００ ０． ２９２ ０． ０６０ ０． ９１８ ０． ６１６ ０． ９６５ ０． ７７６ ０． ８３４ ０． ６２２ ０． １１４ ０． ５１６
↑４． ９％

表 ５　 二分类检测模型的扩散对抗增强效果（准确率）
Ｔａｂｌｅ ５　 Ａｃｃｕｒａｃｙ ｏｆ ｂｉｎａｒｙ ｃｌａｓｓｉｆｉｃａｔｉｏｎ ｂｙ ａｄｖｅｒｓａｒｉａｌ ｄｉｆｆｕｓｉｏｎ
攻击方法 数据集 正常流量 攻击流量 总体

ＦＧＳＭ

测试集 ０． ７０６ ０． ９９０ ０． ８５５
扰动测试集 ０． ４００ ０． ７０３ ０． ６０６
对抗训练 ０． ７１９ ０． ８２０ ０． ７７５
扩散对抗训练 ０． ７４５ ０． ９８７ ０． ８７８

ＡｄｖＧＡＮ

测试集 ０． ７０６ ０． ９９０ ０． ８５５
扰动测试集 ０． ６２８ ０． ４３４ ０． ５２１
对抗训练 ０． ６６８ ０． ９８１ ０． ８４６
扩散对抗训练 ０． ７３７ ０． ９８８ ０． ８７３

　 　 然后采用ＦＧＳＭ和ＡｄｖＧＡＮ对多分类检测模型进行攻

击，并使用对抗训练和扩散对抗训练进行防御． 多分类模型的

检测准确率如表 ６ 所示． 总体准确率从 ＦＧＳＭ 对抗训练的

０． ７５８提升到扩散对抗训练的 ０． ７６８，从 ＡｄｖＧＡＮ 对抗训练的

０． ７３２ 提升到扩散对抗训练的 ０． ８０２． 扩散对抗训练的防御效

果优于对抗训练． 扩散模型增强对抗样本能提升多分类检测

模型的防御能力． 对于攻击前检测精度较高的类别，对抗防御

效果也较好． 而对于攻击前检测精度较低的类别，由于无法学

习到准确特征，对抗防御效果亦差．
３． ５　 方法比较

为验证本文方法的优越性，将其与业界现有数据生成方

法 ＣＶＡＥ 和 ＣＧＡＮ 针对增强检测效果进行对比． 表 ７ 展示了

基于原始训练集、ＣＧＡＮ 增强训练集、ＣＶＡＥ 增强训练集、本
表 ６　 多分类检测模型的扩散对抗增强效果（准确率）

Ｔａｂｌｅ ６　 Ａｃｃｕｒａｃｙ ｏｆ ｍｕｌｔｉｐｌｅ ｃｌａｓｓｉｆｉｃａｔｉｏｎ ｂｙ ａｄｖｅｒｓａｒｉａｌ ｄｉｆｆｕｓｉｏｎ

攻击方法 数据集 Ａｎａｌｙｓｉｓ Ｂａｃｋｄｏｏｒ Ｄｏｓ Ｅｘｐｌｏｉｔｓ Ｆｕｚｚｅｒｓ Ｇｅｎｅｒｉｃ Ｎｏｒｍａｌ Ｒｅｃｏｎｎａ
ｉｓｓａｎｃｅ Ｓｈｅｌｌ ｃｏｄｅ Ｗｏｒｍｓ 总体

ＦＧＳＭ

测试集 ０． ０００ ０． ０１４ ０． ０４７ ０． ９３４ ０． ５３９ ０． ９６６ ０． ７５１ ０． ７８６ ０． ５２７ ０． １１４ ０． ７６３
扰动测试集 ０． ０１７ ０． ００９ ０． １４５ ０． ３７８ ０． １７２ ０． ０３８ ０． ５５３ ０． ００５ ０． ００１ ０． ０００ ０． ３２８
对抗训练 ０． ０００ ０． ０２６ ０． １９０ ０． ８６３ ０． ５３６ ０． ９６５ ０． ７４７ ０． ７７２ ０． ４９７ ０． １１４ ０． ７５８
扩散对抗训练 ０． ０００ ０． ０１０ ０． １３４ ０． ８８９ ０． ５１０ ０． ９６５ ０． ７７３ ０． ７７４ ０． ４７１ ０． ０４６ ０． ７６８

ＡｄｖＧＡＮ

测试集 ０． ０００ ０． ０１４ ０． ０４７ ０． ９３４ ０． ５３９ ０． ９６６ ０． ７５１ ０． ７８６ ０． ５２７ ０． １１４ ０． ７６３
扰动测试集 ０． ００４ ０． ０００ ０． １３５ ０． ０７３ ０． １１８ ０． ３８１ ０． ０２１ ０． ００１ ０． ０００ ０． ０００ ０． １２２
对抗训练 ０． ０００ ０． ００２ ０． ０２８ ０． ８７４ ０． ５０２ ０． ９５２ ０． ７３３ ０． ６２０ ０． ２１７ ０． １３６ ０． ７３２
扩散对抗训练 ０． ０１０ ０． ０００ ０． ０２２ ０． ８６８ ０． ３３７ ０． ９５９ ０． ９０３ ０． ７５９ ０． １６７ ０． １３６ ０． ８０２

表 ７　 二分类检测模型的不同增强方法对比

Ｔａｂｌｅ ７　 Ｄｉｆｆｅｒｅｎｔ ｅｎｈａｎｃｅｍｅｎｔ ｍｅｔｈｏｄｓ ｆｏｒ ｂｉｎａｒｙ ｃｌａｓｓｉｆｉｃａｔｉｏｎ
指标 增强方法 正常流量 攻击流量 总体

Ａｃｃｕｒａｃｙ

无 ０． ７０６ ０． ９９０ ０． ８５５
ＣＧＡＮ ０． ７２４ ０． ９８８ ０． ８６９
ＣＶＡＥ ０． ７５９ ０． ９８６ ０． ８８４
Ｏｕｒｓ ０． ８１２ ０． ９７９ ０． ９０４

Ｐｒｅｃｉｓｉｏｎ

无 ０． ９８４ ０． ８０５ ０． ８９４
ＣＧＡＮ ０． ９８０ ０． ８１４ ０． ８９７
ＣＶＡＥ ０． ９７８ ０． ８３４ ０． ８９９
Ｏｕｒｓ ０． ９８０ ０． ８６４ ０． ９１７

Ｒｅｃａｌｌ

无 ０． ７０６ ０． ９９０ ０． ８４８
ＣＧＡＮ ０． ７２４ ０． ９８８ ０． ８５６
ＣＶＡＥ ０． ７５９ ０． ９８６ ０． ８８４
Ｏｕｒｓ ０． ８１２ ０． ９７９ ０． ８９５

文扩散增强训练集训练得到的二分类入侵检测模型在测试集

上的指标． 尽管不同数据增强方法均在一定程度上提高了模

型检测能力，本文扩散增强方法 ＤＩＤＥ 的效果更加优越．
表 ８ 展示了多分类检测模型经过不同数据增强方法后在

测试集上的指标． 尽管不同数据增强方法均在一定程度上提

高了模型的检测能力，本文扩散增强方法 ＤＩＤＥ 更加优越，特
别是在样本量较少类别的检测上，扩散增强方法表现出更明

显的提升． 扩散增强方法生成的样本在质量、保真度和多样性

方面均具有更高性能，能学习到原始数据集的分布特征，并对

原始数据集进行有效扩充，从而改善数据类别不平衡问题，进
而提高检测模型的分类效果．

４　 结　 论

　 　 本文提出一种基于扩散模型的网络入侵检测增强方法

ＤＩＤＥ，旨在解决网络入侵检测模型在训练中的数据不平衡问

题以及模型泛化能力不足问题． 通过改进检测过程和扩散模

０８９２ 　 　 　 　 　 　 小　 型　 微　 型　 计　 算　 机　 系　 统 　 　 　 　 　 　 ２０２５ 年



型，使其适用于表格形式的入侵检测数据，ＤＩＤＥ 能够合成高

质量的训练数据和多样化的对抗样本，从检测和防御两方面

提升入侵检测模型的性能． 在 ＵＮＳＷ⁃ＮＢ１５ 数据集上的验证

表明，相比业界常用的数据增强方法 ＣＶＡＥ 和 ＣＧＡＮ，ＤＩＤＥ
表 ８　 多分类检测模型的不同增强方法对比

Ｔａｂｌｅ ８　 Ｄｉｆｆｅｒｅｎｔ ｅｎｈａｎｃｅｍｅｎｔ ｍｅｔｈｏｄｓ ｆｏｒ ｍｕｌｔｉｐｌｅ ｃｌａｓｓｉｆｉｃａｔｉｏｎ

指标 增强方法 Ａｎａｌｙｓｉｓ Ｂａｃｋｄｏｏｒ Ｄｏｓ Ｅｘｐｌｏｉｔｓ Ｆｕｚｚｅｒｓ Ｇｅｎｅｒｉｃ ＮｏｒｍａｌＲｅｃｏｎｎａｉｓｓａｎｃｅＳｈｅｌｌｃｏｄｅ Ｗｏｒｍｓ 总体

Ａｃｃｕｒａｃｙ

无 ０． ０００ ０． ０１４ ０． ０４７ ０． ９３４ ０． ５３９ ０． ９６６ ０． ７５１ ０． ７８６ ０． ５２７ ０． １１４ ０． ７６３
ＣＶＡＥ ０． ０００ ０． ０１７ ０． ０５６ ０． ９１３ ０． ５１１ ０． ９６６ ０． ７７３ ０． ８０７ ０． ４４４ ０． １１４ ０． ７６９
ＣＧＡＮ ０． ０００ ０． ０３６ ０． ０５５ ０． ８９１ ０． ５３４ ０． ９６８ ０． ７６２ ０． ７９１ ０． ５３７ ０． １５２ ０． ７６７
Ｏｕｒｓ ０． ０００ ０． ２９２ ０． ０６０ ０． ９１８ ０． ６１６ ０． ９６５ ０． ７７６ ０． ８３４ ０． ６２２ ０． １１４ ０． ７７８
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能够获得更好的数据保真度和多样性，在缓解数据不平衡的

同时，提高二分类和多分类检测模型的性能． 通过 ＤＩＤＥ 增强

ＦＧＳＭ 和 ＡｄｖＧＡＮ 对抗样本后，合成的对抗样本更加多样

化，经过扩散对抗训练后的二分类和多分类检测模型能够获

得更强的防御能力，优于仅采用对抗训练． 本文的研究证明了

扩散模型在网络安全领域的潜力．

Ｒｅｆｅｒｅｎｃｅｓ：
［ １ ］ Ａｌｆｒｈａｎ Ａ Ａ，Ａｌｈｕｓａｉｎ Ｒ Ｈ，Ｋｈａｎ Ｒ Ｕ． ＳＭＯＴＥ：ｃｌａｓｓ ｉｍｂａｌａｎｃｅ

ｐｒｏｂｌｅｍ ｉｎ ｉｎｔｒｕｓｉｏｎ ｄｅｔｅｃｔｉｏｎ ｓｙｓｔｅｍ ［ Ｃ］ ／ ／ Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｃｏｎｆｅｒ⁃
ｅｎｃｅ ｏｎ Ｃｏｍｐｕｔｉｎｇ ａｎｄ Ｉｎｆｏｒｍａｔｉｏｎ Ｔｅｃｈｎｏｌｏｇｙ （ ＩＣＣＩＴ），２０２０：
１⁃５．

［ ２ ］ Ｓｏｈｎ Ｋ，Ｌｅｅ Ｈ，Ｙａｎ Ｘ． Ｌｅａｒｎｉｎｇ ｓｔｒｕｃｔｕｒｅｄ ｏｕｔｐｕｔ ｒｅｐｒｅｓｅｎｔａｔｉｏｎ ｕ⁃
ｓｉｎｇ ｄｅｅｐ ｃｏｎｄｉｔｉｏｎａｌ ｇｅｎｅｒａｔｉｖｅ ｍｏｄｅｌｓ［Ｃ］ ／ ／ Ｐｒｏｃｅｅｄｉｎｇｓ ｏｆ ｔｈｅ
２８ｔｈ Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｃｏｎｆｅｒｅｎｃｅ ｏｎ Ｎｅｕｒａｌ Ｉｎｆｏｒｍａｔｉｏｎ Ｐｒｏｃｅｓｓｉｎｇ
Ｓｙｓｔｅｍｓ⁃Ｖｏｌｕｍｅ ２（ＮＩＰＳ），２０１５：３４８３⁃３４９１．

［ ３ ］ Ｓｏｏｄ Ｔ，Ｐｒａｋａｓｈ Ｓ，Ｓｈａｒｍａ Ｓ，ｅｔ ａｌ． Ｉｎｔｒｕｓｉｏｎ ｄｅｔｅｃｔｉｏｎ ｓｙｓｔｅｍ ｉｎ
ｗｉｒｅｌｅｓｓ ｓｅｎｓｏｒ ｎｅｔｗｏｒｋ ｕｓｉｎｇ ｃｏｎｄｉｔｉｏｎａｌ ｇｅｎｅｒａｔｉｖｅ ａｄｖｅｒｓａｒｉａｌ ｎｅｔ⁃
ｗｏｒｋ［Ｊ］ ． Ｗｉｒｅｌｅｓｓ Ｐｅｒｓｏｎａｌ Ｃｏｍｍｕｎｉｃａｔｉｏｎｓ，２０２２，１２６：９１１⁃９３１．

［ ４ ］ Ｈｏ Ｊ， Ｊａｉｎ Ａ，Ａｂｂｅｅｌ Ｐ． Ｄｅｎｏｉｓｉｎｇ ｄｉｆｆｕｓｉｏｎ ｐｒｏｂａｂｉｌｉｓｔｉｃ ｍｏｄｅｌｓ
［Ｊ］ ． Ａｄｖａｎｃｅｓ ｉｎ Ｎｅｕｒａｌ Ｉｎｆｏｒｍａｔｉｏｎ Ｐｒｏｃｅｓｓｉｎｇ Ｓｙｓｔｅｍｓ，２０２０，
３３：６８４０⁃６８５１，ｄｏｉ：１０． ４８５５０ ／ ａｒＸｉｖ． ２００６． １１２３９．

［ ５ ］ Ｎａｇａｒａｊａ Ｓ，Ｍｉｔｔａｌ Ｐ，Ｈｏｎｇ Ｃ Ｙ，ｅｔ ａｌ． ＢｏｔＧｒｅｐ： ｆｉｎｄｉｎｇ Ｐ２Ｐ ｂｏｔｓ
ｗｉｔｈ ｓｔｒｕｃｔｕｒｅｄ ｇｒａｐｈ ａｎａｌｙｓｉｓ［Ｃ］ ／ ／ １９ｔｈ ＵＳＥＮＩＸ Ｓｅｃｕｒｉｔｙ Ｓｙｍｐｏ⁃
ｓｉｕｍ（ＵＳＥＮＩＸ Ｓｅｃｕｒｉｔｙ），２０１０：１⁃１６．

［ ６ ］ Ｚｈａｎｇ Ｊ，Ｘｉｅ Ｙ，Ｙｕ Ｆ，ｅｔ ａｌ． Ｉｎｔｅｎｔｉｏｎ ａｎｄ ｏｒｉｇｉｎａｔｉｏｎ：ａｎ ｉｎｓｉｄｅ ｌｏｏｋ
ａｔ ｌａｒｇｅ⁃ｓｃａｌｅ ｂｏｔ ｑｕｅｒｉｅｓ［Ｃ］ ／ ／ ２０ｔｈ Ｎｅｔｗｏｒｋ ａｎｄ Ｄｉｓｔｒｉｂｕｔｅｄ Ｓｙｓ⁃
ｔｅｍ Ｓｅｃｕｒｉｔｙ（ＮＤＳＳ）Ｓｙｍｐｏｓｉｕｍ，２０１３：１⁃１６．

［ ７ ］ Ｃｈｅｎ Ｆ，Ｒａｎｊａｎ Ｓ，Ｔａｎ Ｐ Ｎ． Ｄｅｔｅｃｔｉｎｇ ｂｏｔｓ ｖｉａ ｉｎｃｒｅｍｅｎｔａｌ ＬＳ⁃ＳＶＭ
ｌｅａｒｎｉｎｇ ｗｉｔｈ ｄｙｎａｍｉｃ ｆｅａｔｕｒｅ ａｄａｐｔａｔｉｏｎ［Ｃ］ ／ ／ Ｐｒｏｃｅｅｄｉｎｇｓ ｏｆ ｔｈｅ
１７ｔｈ ＡＣＭ ＳＩＧＫＤＤ Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｃｏｎｆｅｒｅｎｃｅ ｏｎ Ｋｎｏｗｌｅｄｇｅ Ｄｉｓ⁃
ｃｏｖｅｒｙ ａｎｄ Ｄａｔａ Ｍｉｎｉｎｇ（ＫＤＤ），２０１１：３８６⁃３９４．

［ ８ ］ Ｚｈａｎｇ Ｊ，Ｌｉｎｇ Ｙ，Ｆｕ Ｘ，ｅｔ ａｌ． Ｍｏｄｅｌ ｏｆ ｔｈｅ ｉｎｔｒｕｓｉｏｎ ｄｅｔｅｃｔｉｏｎ ｓｙｓ⁃
ｔｅｍ ｂａｓｅｄ ｏｎ ｔｈｅ ｉｎｔｅｇｒａｔｉｏｎ ｏｆ ｓｐａｔｉａｌ⁃ｔｅｍｐｏｒａｌ ｆｅａｔｕｒｅｓ［ Ｊ］ ． Ｃｏｍ⁃
ｐｕｔｅｒｓ ＆ Ｓｅｃｕｒｉｔｙ， ２０２０， ８９： １０１６８１， ｄｏｉ： １０． １０１６ ／ ｊ． ｃｏｓｅ．
２０１９． １０１６８１．

［ ９ ］ Ｋａｓｏｎｇｏ Ｓ Ｍ，Ｓｕｎ Ｙ． Ａ ｄｅｅｐ ｌｅａｒｎｉｎｇ ｍｅｔｈｏｄ ｗｉｔｈ ｗｒａｐｐｅｒ ｂａｓｅｄ
ｆｅａｔｕｒｅ ｅｘｔｒａｃｔｉｏｎ ｆｏｒ ｗｉｒｅｌｅｓｓ ｉｎｔｒｕｓｉｏｎ ｄｅｔｅｃｔｉｏｎ ｓｙｓｔｅｍ［ Ｊ］ ． Ｃｏｍ⁃
ｐｕｔｅｒｓ ＆ Ｓｅｃｕｒｉｔｙ， ２０２０， ９２： １０１７５２， ｄｏｉ： １０． １１０９ ／ ＡＣＣＥＳＳ．
２０１９． ２９０５６３３．

［１０］ Ｌｉ Ｚ，Ｈｕａｎｇ Ｃ，Ｑｉｕ Ｗ． Ａｎ ｉｎｔｒｕｓｉｏｎ ｄｅｔｅｃｔｉｏｎ ｍｅｔｈｏｄ ｃｏｍｂｉｎｉｎｇ
ｖａｒｉａｔｉｏｎａｌ ａｕｔｏ⁃ｅｎｃｏｄｅｒ ａｎｄ ｇｅｎｅｒａｔｉｖｅ ａｄｖｅｒｓａｒｉａｌ ｎｅｔｗｏｒｋｓ［ Ｊ］ ．
Ｃｏｍｐｕｔｅｒ Ｎｅｔｗｏｒｋｓ，２０２４，２５３：１１０７２４．

［１１］ Ｇｏｏｄｆｅｌｌｏｗ Ｉ Ｊ，Ｓｈｌｅｎｓ Ｊ，Ｓｚｅｇｅｄｙ Ｃ． Ｅｘｐｌａｉｎｉｎｇ ａｎｄ ｈａｒｎｅｓｓｉｎｇ ａｄ⁃
ｖｅｒｓａｒｉａｌ ｅｘａｍｐｌｅｓ［Ｃ］ ／ ／ ３ｒｄ Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｃｏｎｆｅｒｅｎｃｅ ｏｎ Ｌｅａｒｎｉｎｇ
Ｒｅｐｒｅｓｅｎｔａｔｉｏｎｓ （ ＩＣＬＲ），２０１５：１⁃１１．

［１２］ Ｘｉａｏ Ｃ，Ｌｉ Ｂ，Ｚｈｕ Ｊ Ｙ，ｅｔ ａｌ． Ｇｅｎｅｒａｔｉｎｇ ａｄｖｅｒｓａｒｉａｌ ｅｘａｍｐｌｅｓ ｗｉｔｈ
ａｄｖｅｒｓａｒｉａｌ ｎｅｔｗｏｒｋｓ ［ Ｃ］ ／ ／ Ｐｒｏｃｅｅｄｉｎｇｓ ｏｆ ｔｈｅ ２７ｔｈ Ｉｎｔｅｒｎａｔｉｏｎａｌ
Ｊｏｉｎｔ Ｃｏｎｆｅｒｅｎｃｅ ｏｎ Ａｒｔｉｆｉｃｉａｌ Ｉｎｔｅｌｌｉｇｅｎｃｅ，２０１８：３９０５⁃３９１１．

［１３］ Ｇａｒｃíａ Ｓ，Ｒａｍíｒｅｚ Ｇａｌｌｅｇｏ Ｓ，Ｌｕｅｎｇｏ Ｊ，ｅｔ ａｌ． Ｂｉｇ ｄａｔａ ｐｒｅｐｒｏｃｅｓｓ⁃
ｉｎｇ：ｍｅｔｈｏｄｓ ａｎｄ ｐｒｏｓｐｅｃｔｓ［ Ｊ］ ． Ｂｉｇ Ｄａｔａ Ａｎａｌｙｔｉｃｓ，２０１６：１⁃２２，
ｄｏｉ：１０． １１８６ ／ ｓ４１０４４⁃０１６⁃００１４⁃０．

［１４］ Ｚｈａｎｇ Ｈ，Ｚｈａｎｇ Ｊ，Ｓｒｉｎｉｖａｓａｎ Ｂ，ｅｔ ａｌ． Ｍｉｘｅｄ⁃ｔｙｐｅ ｔａｂｕｌａｒ ｄａｔａ ｓｙｎ⁃
ｔｈｅｓｉｓ ｗｉｔｈ ｓｃｏｒｅ⁃ｂａｓｅｄ ｄｉｆｆｕｓｉｏｎ ｉｎ ｌａｔｅｎｔ ｓｐａｃｅ［Ｃ］ ／ ／ Ｐｒｏｃｅｅｄｉｎｇｓ
ｏｆ ｔｈｅ １２ｔｈ Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｃｏｎｆｅｒｅｎｃｅ ｏｎ Ｌｅａｒｎｉｎｇ Ｒｅｐｒｅｓｅｎｔａｔｉｏｎｓ
（ ＩＣＬＲ），２０２４：１⁃２９．

［１５］ Ｋａｒｒａｓ Ｔ，Ａｉｔｔａｌａ Ｍ，Ａｉｌａ Ｔ，ｅｔ ａｌ． Ｅｌｕｃｉｄａｔｉｎｇ ｔｈｅ ｄｅｓｉｇｎ ｓｐａｃｅ ｏｆ
ｄｉｆｆｕｓｉｏｎ⁃ｂａｓｅｄ ｇｅｎｅｒａｔｉｖｅ ｍｏｄｅｌｓ［ Ｊ］ ． Ａｄｖａｎｃｅｓ ｉｎ Ｎｅｕｒａｌ Ｉｎｆｏｒ⁃
ｍａｔｉｏｎ Ｐｒｏｃｅｓｓｉｎｇ Ｓｙｓｔｅｍｓ， ２０２２， ３５： ２６５６５⁃２６５７７， ｄｏｉ： １０．
４８５５０ ／ ａｒＸｉｖ． ２２０６． ００３６４．

［１６］ Ｖｉｂｈｕｔｅ Ａ Ｄ，Ｋｈａｎ Ｍ，Ｐａｔｉｌ Ｃ Ｈ，ｅｔ ａｌ． Ｎｅｔｗｏｒｋ ａｎｏｍａｌｙ ｄｅｔｅｃｔｉｏｎ
ａｎｄ ｐｅｒｆｏｒｍａｎｃｅ ｅｖａｌｕａｔｉｏｎ ｏｆ ｃｏｎｖｏｌｕｔｉｏｎａｌ ｎｅｕｒａｌ ｎｅｔｗｏｒｋｓ ｏｎ
ＵＮＳＷ⁃ＮＢ１５ ｄａｔａｓｅｔ［ Ｊ］ ． Ｐｒｏｃｅｄｉａ Ｃｏｍｐｕｔｅｒ Ｓｃｉｅｎｃｅ，２０２４，２３５：
２２２７⁃２２３６，ｄｏｉ：１０． １０１６ ／ ｊ． ｐｒｏｃｓ． ２０２４． ０４． ２１１．

［１７］ Ｍｏｕｓｔａｆａ Ｎ，Ｓｌａｙ Ｊ． ＵＮＳＷ⁃ＮＢ１５： ａ ｃｏｍｐｒｅｈｅｎｓｉｖｅ ｄａｔａ ｓｅｔ ｆｏｒ
ｎｅｔｗｏｒｋ ｉｎｔｒｕｓｉｏｎ ｄｅｔｅｃｔｉｏｎ ｓｙｓｔｅｍｓ （ＵＮＳＷ⁃ＮＢ１５ ｎｅｔｗｏｒｋ ｄａｔａ
ｓｅｔ） ［ Ｃ ］ ／ ／ Ｍｉｌｉｔａｒｙ Ｃｏｍｍｕｎｉｃａｔｉｏｎｓ ａｎｄ Ｉｎｆｏｒｍａｔｉｏｎ Ｓｙｓｔｅｍｓ
Ｃｏｎｆｅｒｅｎｃｅ（ＭｉｌＣＩＳ），２０１５：１⁃６．

［１８］ Ａｌａａ Ａ，Ｖａｎ Ｂｒｅｕｇｅｌ Ｂ，Ｓａｖｅｌｉｅｖ Ｅ Ｓ，ｅｔ ａｌ． Ｈｏｗ ｆａｉｔｈｆｕｌ ｉｓ ｙｏｕｒ
ｓｙｎｔｈｅｔｉｃ ｄａｔａ？ Ｓａｍｐｌｅ⁃ｌｅｖｅｌ ｍｅｔｒｉｃｓ ｆｏｒ ｅｖａｌｕａｔｉｎｇ ａｎｄ ａｕｄｉｔｉｎｇ
ｇｅｎｅｒａｔｉｖｅ ｍｏｄｅｌｓ ［ Ｃ ］ ／ ／ Ｉｎｔｅｒｎａｔｉｏｎａｌ Ｃｏｎｆｅｒｅｎｃｅ ｏｎ Ｍａｃｈｉｎｅ
Ｌｅａｒｎｉｎｇ（ＰＭＬＲ），２０２２：２９０⁃３０６．

１８９２１２ 期　 　 　 　 　 　 　 周　 瑞 等：利用扩散模型的网络入侵检测增强方法 　 　


