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Intrusion Detection Enhancement Method Exploiting Diffusion Models

ZHOU Rui, LIANG Wenlong,MA Yang,LIAO Yijia, KUANG Ping
( School of Information and Software Engineering, University of Electronic Science and Technology of China,Chengdu 610054 ,China)

Abstract: Network intrusion detection systems suffer from imbalanced training data and low defense capability due to insufficient gen-
eralization. To solve this problem,this paper proposes an intrusion detection enhancement method based on diffusion model. By impro-
ving the existing detection process and adapting the existing diffusion model to intrusion detection data,this method can synthesize
high-quality training data and diverse adversarial samples,hence improve the performance of intrusion detection. Experiments on intru-
sion detection datasets show that compared with the commonly used data augmentation methods based on variational autoencoder and
adversarial generative network,the proposed method can obtain better data fidelity and diversity,alleviate data imbalance and improve
detection performance. After enhancing the adversarial samples by thismethod, more diverse adversarial samples can be synthesized.
The effect of diffusion adversarial training is better than that of adversarial training,by which the defense ability of the intrusion detec-

tion system is enhanced.
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Fig.2 Generation of tabular data by diffusion model
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Table 1 Evaluation of syntheticdata quality
for binary classification
Method Single Pair Score  a-Precision (3-Recall
CGAN 30.2% 57.1% 43.7% 0.465 0.079
CVAE 28.9% 61.6% 45.3% 0.502 0.080
TABSYN  98.5% 97.8% 98.1% 0.975 0. 662
Ours 99.5% 99.9% 99.7 % 0.996 0.701
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Table 2 Evaluation of syntheticdata quality

for multiple classification

Method Single Pair Score  a-Precision [-Recall
CGAN 26.4% 46.3% 44.4% 0.036 0.000
CVAE 21.4% 71.1% 46.2% 0.027 0.000
TABSYN  97.4% 96.8% 97.1% 0.974 0.477
Ours 99.4% 98.8% 99.1% 0.994 0.509
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Table 3  Enhancement effect of binary classification by diffusion
Ei22D sk E# Yk JEREN MARTH
N, JE iR 56000 119341 175341
FeAct PEE 63341 0 63341 -
b 0.706 0.990 0.855
Aceuracy PifEsE 0,812 0.979 0.904 14.9%
Precision JR IR 0.984 0.805 0.894 t2.3%
PEOETE 0,990 0.864 0.917
Recall 4 0.706 0.990 0.848 -
PrifEsE 0,812 0.979 0.895
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Table 4 Enhancement effect of multiple classification by diffusion
Bhr BdE4E  Analysis Backdoor  Dos Exploits  Fuzzers  Generic ~ Normal i:sc;llr; Shellcode ~ Worms Bk BT
Bt ki 2000 1746 12264 33393 18184 40000 56000 10491 1133 130 175341
" YR 0 6000 12000 0 20000 0 0 20000 4000 300 62300 )
Jidn 0.000 0.014 0.047 0.934 0.539 0. 966 0.751 0.786 0.527 0.114 0.763
Accuracy [ 11.5%
P HER 0.000 0.292 0. 060 0.918 0.616 0.965 0.776 0.834 0.622 0.114 0.778
. R 0.000 0.174 0.482 0.545 0.295 0.997 0.944 0.874 0.361 0.556 0.523
Precision ) 10.9%
PR 0,000 0.354 0.490 0.577 0.340 0.998 0.957 0. 827 0.382 0.714 0.532
JE R 0.000 0.014 0.047 0.934 0.539 0. 966 0.751 0.786 0.527 0.114 0.467
Recall e 14.9%
PEOETE  0.000 0.292 0.060 0.918 0.616 0.965 0.776 0.834 0.622 0.114 0.516
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Table 5 Accuracy of binary classification by adversarial diffusion

Yok ik 3EiiE S EFwE BlnE Sk
pllFmecS 0.706 0.990 0.855
L3 A 0.400 0.703 0. 606
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¥ BTl gk 0.745 0.987 0.878
4 0.706 0.990 0.855
RSB 0.628 0.434 0.521

AdvGAN Wjj” e
POETNIIEN 0. 668 0.981 0. 846
¥ BTl gk 0.737 0.988 0.873
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0. 732 FFEPHFHIILZRAT 0. 802. PRI I 2R 1 B 5%
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Table 6 Accuracy of multiple classification by adversarial diffusion

Wik ik Hite Analysis Backdoor  Dos Exploits ~ Fuzzers Generic  Normal ﬁ::;r?;a Shell code Worms  EifA
MK LE 0.000  0.014  0.047 0.934  0.539  0.966  0.751 0.786  0.527  0.114 0.763
FGSM Yezhimi4E 0.017 0.009 0.145 0.378 0.172 0.038 0.553 0. 005 0.001 0.000 0.328
POETRIIIE:S 0.000 0.026 0.190 0.863  0.536  0.965 0.747  0.772  0.497  0.114 0.758
¥ et il g 0.000 0.010 0.134  0.889  0.510 0.965 0.773  0.774  0.471  0.046 0.768
4 0.000 0.014 0.047 0.934 0.539 0.966 0.751 0.786 0.527 0.114 0.763
YA 0.004  0.000  0.135 0.073 0.118 0.381 0.021 0.001 0.000 0.000 0.122
AdvGAN .
POETRIIIESS 0.000 0.002 0.028 0.874  0.502  0.952  0.733  0.620  0.217  0.136 0.732
¥Rl g 0.010  0.000  0.022 0.88  0.337 0.959  0.903 0.759  0.167  0.136 0.802
F£T KL A AN [R5y X EE L FERR. AN AR 35 7 R I — e R R T
Table 7 Different enhancement methods for binary classification TR BE F7 , A SCH L5 75 DIDE AR5 S e k.
i WRgOTE: IEEWE Bk JENEN 8 IR T L2y 2SR AR T 280 N TR Bl P it kT vk e
7 0.706 0.990 0.855 WAL AR bR, B [FIE s 3G 0 7 s I 7 — e R 4
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Table 8 Different enhancement methods for multiple classification

B Y Iy vk Analysis Backdoor ~ Dos Exploits  Fuzzers Generic  NormalReconnaissancShellcode Worms G {A
Jc 0.000 0.014 0.047 0.934 0.539 0.966 0.751 0.786 0.527 0.114 0.763

CVAE 0.000 0.017 0.056 0.913 0.511 0.966 0.773 0.807 0.444 0.114 0.769

Aceuracy CGAN 0.000 0.036 0.055 0.891 0.534 0.968 0.762 0.791 0.537 0.152 0.767
Ours 0.000 0.292 0.060 0.918 0.616 0.965 0.776 0.834 0. 622 0.114 0.778

Jc 0.000 0.174 0.482 0.545 0.295 0.997 0.944 0.874 0.361 0.556 0.523

Precision CVAE 0.000 0.256 0.428 0.554 0.292 0.997 0.937 0.842 0.446 0.455 0.521
CGAN 0.000 0.304 0.320 0.576 0.293 0.997 0.941 0.883 0.427 0.539 0.528

Ours 0.000 0.354 0.490 0.577 0.340 0.998 0.957 0.827 0.382 0.714 0.532

e 0.000 0.014 0.047 0.934 0.539 0.966 0.751 0.786 0.527 0.114  0.467

Recall CVAE 0.000 0.017 0.056 0.913 0.511 0.966 0.773 0.807 0.444 0.114  0.460
CGAN 0.000 0.036 0.135 0.891 0.534 0.968 0.762 0.791 0.537 0.152 0.482

Ours 0.000 0.292 0.060 0.918 0.616 0.965 0.776 0.834 0. 622 0.114 0.516
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